Gadolinium Reduces AMPA Receptor Desensitization and Deactivation in Hippocampal Neurons

2001 ◽  
Vol 86 (1) ◽  
pp. 173-182 ◽  
Author(s):  
Saobo Lei ◽  
John F. MacDonald

The actions of the trivalent cation Gd3+ on whole cell AMPA receptor-mediated currents were studied in isolated hippocampal neurons, in nucleated or outside-out patches taken from cultured hippocampal neurons, and on miniature excitatory postsynaptic currents (mEPSCs) recorded in cultured hippocampal neurons. Glutamate, AMPA, or kainate was employed to activate AMPA receptors. Applications of relatively low concentrations of Gd3+ (0.1–10 μM) substantially enhanced steady-state whole cell glutamate and kainate-evoked currents without altering peak currents, suggesting that desensitization was reduced. However, higher concentrations (>30 μM) depressed steady-state currents, indicating an underlying inhibition of channel activity. Lower concentrations of Gd3+also increased the potency of peak glutamate-evoked currents without altering that of steady-state currents. An ultrafast perfusion system and nucleated patches were then used to better resolve peak glutamate-evoked currents. Low concentrations of Gd3+ reduced peak currents, enhanced steady-state currents, and slowed the onset of desensitization, providing further evidence that this cation reduces desensitization. In the presence of cyclothiazide, a compound that blocks desensitization, a low concentration Gd3+ inhibited both peak and steady-state currents, indicating that Gd3+ both reduces desensitization and inhibits these currents. Gd3+ reduced the probability of channel opening at the peak of the currents but did not alter the single channel conductance calculated using nonstationary variance analysis. Recovery from desensitization was enhanced, and glutamate-evoked current activation and deactivation were slowed by Gd3+. The Gd3+-induced reduction in desensitization did not require the presence of the GluR2 subunit as this effect was seen in hippocampal neurons from GluR2 null-mutant mice. Gd3+ reduced the time course of decay of mEPSCs perhaps as a consequence of its slowing of AMPA receptor deactivation although an increase in the frequency of mEPSCs also suggested enhanced presynaptic release of transmitter. These results demonstrate that Gd3+ potently reduces AMPA receptor desensitization and mimics a number of the properties of the positive modulators of AMPA receptor desensitization such as cyclothiazide.

1996 ◽  
Vol 84 (3) ◽  
pp. 626-635 ◽  
Author(s):  
Ching-Yue Yang ◽  
Chih-Shung Wong ◽  
Chuan-Cheng Yu ◽  
Hsiang-Ning Luk ◽  
Cheng-I Lin

Background Propofol may exert negative inotropic and chronotropic actions in the heart. Single-channel studies show that propofol affects the kinetics of opening and closing of cardiac L-type calcium channels (ICa(L)) without altering channel conductance. The aim of this study was to investigate the mechanisms of depressant effects of propofol on cardiac whole-cell ICa(L). Methods Single ventricular myocytes were freshly dissciated from guinea pig hearts using enzymatic isolation. One-suction electrode voltage-clamp technique (whole-cell mode) was used. LCa(L) was separated from other contaminated ionic currents. Propofol was applied in the commercial 10% Intralipid emulsion formula (Zeneca, UK). Results In isolated cardiomyocytes, propofol significantly inhibited whole-cell ICa(L) in a concentration-dependent manner (K D = 52.0 microM; Hill coefficient = 1.3). The solvent (Intralipid) did not affect ICa(L). Propofol decreased ICa(L) at all potentials tested along the voltage axis and reduced the slope conductance. The threshold potential for activation and the peak potential of the current-voltage relationship were not changed by propofol. The steady-state activation curves overlapped in the absence and the presence of 56 microM propofol. In contrast, the steady-state inactivation curve was shifted in the hyperpolarizing direction. The time course of the recovery from inactivation was delayed by 56 microM propofol. The blocking action on ICa(L) of propofol shows marked resting block and use-dependent block. Propofol caused more pronounced inhibition at a higher stimulation frequency. The effect of propofol on the inactivation process was even more clear on ICa(L). Conclusions The authors conclude tha propofol, at supratherapeutic concentrations, inhibits cardiac ICa(L). This inhibition is mainly due to a shift of inactivation curve and a reduction in slope conductance.


1996 ◽  
Vol 76 (5) ◽  
pp. 3415-3424 ◽  
Author(s):  
K. S. Wilcox ◽  
R. M. Fitzsimonds ◽  
B. Johnson ◽  
M. A. Dichter

1. Although glycine has been identified as a required coagonist with glutamate at N-methyl-D-aspartate (NMDA) receptors, the understanding of glycine's role in excitatory synaptic neurotransmission is quite limited. In the present study, we used the whole cell patch-clamp technique to examine the ability of glycine to regulate current flow through synaptic NMDA receptors at excitatory synapses between cultured hippocampal neurons and in acutely isolated hippocampal slices. 2. These studies demonstrate that the glycine modulatory site on the synaptic NMDA receptor is not saturated under baseline conditions and that increased glycine concentrations can markedly increased NMDA-receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal neurons in both dissociated cell culture and in slice. Saturation of the maximal effect of glycine takes place at different concentrations for different cells in culture, suggesting the presence of heterogenous NMDA receptor subunit compositions. 3. Bath-applied glycine had no effect on the time course of EPSCs in either brain slice or culture, indicating that desensitization of the NMDA receptor is not prevented by glycine over the time course of an EPSC. 4. When extracellular glycine concentration is high, all miniature EPSCs recorded in the cultured hippocampal neurons contained NMDA components, indicating that segregation of non-NMDA receptors at individual synaptic boutons does not occur.


1994 ◽  
Vol 71 (6) ◽  
pp. 2570-2575 ◽  
Author(s):  
L. S. Premkumar ◽  
P. W. Gage

1. Single-channel currents were recorded in cell-attached patches on cultured hippocampal neurons in response to gamma-aminobutyric acid-B (GABAB) agonists or serotonin applied to the cell surface outside the patch area. 2. The channels activated by GABAB agonists and serotonin were potassium selective but had a different conductance and kinetic behavior. Channels activated by GABAB agonists had a higher conductance, longer open-time, and longer burst-length than channels activated by serotonin. 3. The kinetic behavior of channels activated by GABAB agonists varied with potential whereas channels activated by serotonin did not show voltage-dependent changes in kinetics. 4. In a few cell-attached patches, both types of channel were activated when the cell was exposed to GABA together with serotonin. 5. It was concluded that GABAB agonists and serotonin activate different potassium channels in the soma of cultured hippocampal neurons.


2001 ◽  
Vol 85 (5) ◽  
pp. 2030-2038 ◽  
Author(s):  
Saobo Lei ◽  
Beverley A. Orser ◽  
Gregory R. L. Thatcher ◽  
James N. Reynolds ◽  
John F. MacDonald

Whole-cell or outside-out patch recordings were used to investigate the effects of protons and positive modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on the desensitization of glutamate-evoked AMPA receptor currents in isolated hippocampal CA1 neurons. Protons inhibited glutamate-evoked currents (IC50 of 6.2 pH units) but also enhanced the apparent rate and extent of AMPA receptor desensitization. The proton-induced enhancement of desensitization could not be attributed to a reduction in the rate of recovery from desensitization or to a change in the kinetics of deactivation. Non-stationary variance analysis indicated that protons reduced maximum open probability without changing the conductance of AMPA channels. The positive modulators of AMPA receptor desensitization, cyclothiazide and GT-21-005 (an organic nitrate), reduced the proton sensitivity of AMPA receptor desensitization, which suggests that they interact with protons to diminish desensitization. In contrast, the effects of wheat germ agglutinin and aniracetam on AMPA receptor desensitization were independent of pH. These results demonstrate that a reduction in the proton sensitivity of receptor desensitization contributes to the mechanism of action of some positive modulators of AMPA receptors.


2012 ◽  
Vol 1 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Kenichi Kato ◽  
Tomoaki Shirao ◽  
Hiroyuki Yamazaki ◽  
Kazuyuki Imamura ◽  
Yuko Sekino

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e108021 ◽  
Author(s):  
Chao-Yin Chen ◽  
Lucas Matt ◽  
Johannes Wilhelm Hell ◽  
Michael A. Rogawski

1999 ◽  
Vol 277 (4) ◽  
pp. C673-C683 ◽  
Author(s):  
Muyiwa Gbadegesin ◽  
Stefano Vicini ◽  
Sandra J. Hewett ◽  
David A. Wink ◽  
Michael Espey ◽  
...  

Nitric oxide (NO) released from a new chemical class of donors enhances N-methyl-d-aspartate (NMDA) channel activity. Using whole cell and single-channel patch-clamp techniques, we have shown that ( Z)-1-[ N-(3-ammoniopropyl)- N-( n-propyl)amino]-NO (PAPA-NO) and diethylamine NO, commonly termed NONOates, potentiate the glutamate-mediated response of recombinant rat NMDA receptors (NR1/NR2A) expressed in HEK-293 cells. The overall effect is an increase in both peak and steady-state whole cell currents induced by glutamate. Single-channel studies demonstrate a significant increase in open probability but no change in the mean single-channel open time or mean channel conductance. Reduction in oxygen levels increased and prolonged the PAPA-NO-induced change in both peak and steady-state glutamate currents in transfected HEK cells. PAPA-NO also enhanced cell death in primary cultures of rodent cortical neurons deprived of oxygen and glucose. This potentiation of neuronal injury was blocked by MK-801, indicating a critical involvement of NMDA receptor activation. The NO-induced increase in NMDA channel activity as well as NMDA receptor-mediated cell death provide firm evidence that NO modulates the NMDA channel in a manner consistent with both a physiological role under normoxic conditions and a pathophysiological role under hypoxic conditions.


1997 ◽  
Vol 78 (3) ◽  
pp. 1320-1333 ◽  
Author(s):  
Gregory A. Kinney ◽  
Linda S. Overstreet ◽  
N. Traverse Slater

Kinney, Gregory A., Linda S. Overstreet, and N. Traverse Slater. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J. Neurophysiol. 78: 1320–1333, 1997. The cellular mechanism underlying the genesis of the long-lasting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor-mediated excitatory postsynaptic currents (EPSCs) at the mossy fiber (MF)–unipolar brush cell (UBC) synapse in rat vestibular cerebellum was examined with the use of whole cell and excised patch-clamp recording methods in thin cerebellar slices. Activation of MFs evokes an all-or-none biphasic AMPA-receptor-mediated synaptic current with a late component that peaks at 100–800 ms, which has been proposed to originate from an entrapment of glutamate in the MF-UBC synaptic cleft and is generated by the steady-state activation of AMPA receptors. Bath application of cyclothiazide, which blocks desensitization of AMPA receptors, produced a dose-dependent enhancement of the amplitude of the synaptic current (median effective dose 30 μM) and slowing of the rise time of the fast EPSC. N-methyl-d-aspartate-receptor-mediated EPSCs in UBCs were not potentiated in amplitude or time course by cyclothiazide (100 μM). The dose-response relations for the steady-state current evoked by glutamate acting at AMPA receptors in excised outside-out patches from UBC and granule somatic membranes was biphasic, peaking at 50 μM and declining to 50–70% of this value at 1 mM glutamate. When glutamate was slowly washed from patches to simulate the gradual decline of glutamate in the synapse, a late hump in the transmembrane current was observed in patches from both cell types. The delivery of a second MF stimulus at the peak of the slow EPSC evoked a fast EPSC of reduced amplitude followed by an undershoot of the subsequent slow current, consistent with the hypothesis that the peak of the slow EPSC reflects the peak of the biphasic steady-state dose-response curve. Estimates of receptor occupancy and glutamate concentration derived from the ratio of fast EPSC amplitudes, and the amplitude and polarity of the initial steady-state current in paired-pulse experiments, predict a slow decline of glutamate with a time constant of 800 ms, declining to ineffective concentrations at 5.4 s. Manipulation of cleft glutamate concentration by lowered extracellular calcium or delivery of brief stimulus trains abolished the slow EPSC and restored the undershoot to paired stimuli, respectively, in a manner consistent with a prolonged lifetime of glutamate in the cleft. The slow component of the EPSC was prolonged in duration by the glutamate reuptake inhibitor l- trans-pyrrolidine-2,4-dicarboxylate, suggesting that glutamate transport contributes to the time course of the synaptic current in UBCs. The data support the notion that the MF-UBC synapse represents an ultrastructural specialization to effectively entrap glutamate for unusually prolonged periods of time following release from MF terminals. The properties of the postsynaptic receptors and constraints on diffusional escape of glutamate imposed by synaptic ultrastructure and glutamate transporters act in concert to sculpt the time course of the resulting slow EPSC. This in turn drives a long-lasting train of action potentials in response to single presynaptic stimuli.


Sign in / Sign up

Export Citation Format

Share Document