scholarly journals NMDA Receptor Activation Mediates Hydrogen Peroxide–Induced Pathophysiology in Rat Hippocampal Slices

2002 ◽  
Vol 87 (6) ◽  
pp. 2896-2903 ◽  
Author(s):  
Marat V. Avshalumov ◽  
Margaret E. Rice

Endogenous reactive oxygen species (ROS) can act as modulators of neuronal activity, including synaptic transmission. Inherent in this process, however, is the potential for oxidative damage if the balance between ROS production and regulation becomes disrupted. Here we report that inhibition of synaptic transmission in rat hippocampal slices by H2O2 can be followed by electrical hyperexcitability when transmission returns during H2O2 washout. As in previous studies, H2O2exposure (15 min) reversibly depressed the extracellular population spike (PS) evoked by Schaffer collateral stimulation. Recovery of PS amplitude, however, was typically accompanied by mild epileptiform activity. Inclusion of ascorbate (400 μM) during H2O2 washout prevented this pathophysiology. No protection was seen with isoascorbate, which is a poor substrate for the stereoselective ascorbate transporter and thus remains primarily extracellular. Epileptiform activity was also prevented by the N-methyl-d-aspartate (NMDA) receptor antagonist, dl-2-amino-5-phosphonopentanoic acid (AP5) during H2O2washout. Once hyperexcitability was induced, however, AP5 did not reverse it. When present during H2O2 exposure, AP5 did not alter PS depression by H2O2but did inhibit the recovery of PS amplitude seen during pulse-train stimulation (10 Hz, 5 s) in H2O2. Inhibition of glutamate uptake by l- trans-2,4-pyrrolidine dicarboxylate (PDC; 50 μM) during H2O2washout markedly enhanced epileptiform activity; coapplication of ascorbate with PDC prevented this. These data indicate that H2O2 exposure can cause activation of normally silent NMDA receptors, possibly via inhibition of redox-sensitive glutamate uptake. When synaptic transmission returns during H2O2 washout, enhanced NMDA receptor activity leads to ROS generation and consequent oxidative damage. These data reveal a pathological cycle that could contribute to progressive degeneration in neurological disorders that involve oxidative stress, including cerebral ischemia.

1999 ◽  
Vol 82 (6) ◽  
pp. 3339-3346 ◽  
Author(s):  
Zhi-Qi Xiong ◽  
Janet L. Stringer

Cesium has been widely used to study the roles of the hyperpolarization-activated (Ih) and inwardly rectifying potassium (KIR) channels in many neuronal and nonneuronal cell types. Recently, extracellular application of cesium has been shown to produce epileptiform activity in brain slices, but the mechanisms for this are not known. It has been proposed that cesium blocks the KIR in glia, resulting in an abnormal accumulation of potassium in the extracellular space and inducing epileptiform activity. This hypothesis has been tested in hippocampal slices and cultured hippocampal neurons using potassium-sensitive microelectrodes. In the present study, application of cesium produced spontaneous epileptiform discharges at physiological extracellular potassium concentration ([K+]o) in the CA1 and CA3 regions of hippocampal slices. This epileptiform activity was not mimicked by increasing the [K+]o. The epileptiform discharges induced by cesium were not blocked by the N-methyl-d- aspartate (NMDA) receptor antagonist AP-5, but were blocked by the non-NMDA receptor antagonist CNQX. In the dentate gyrus, cesium induced the appearance of spontaneous nonsynaptic field bursts in 0 added calcium and 3 mM potassium. Moreover, cesium increased the frequency of field bursts already present. In contrast, ZD-7288, a specific Ihblocker, did not cause spontaneous epileptiform activity in CA1 and CA3, nor did it affect the field bursts in the dentate gyrus, suggesting that cesium induced epileptiform activity is not directly related to blockade of the Ih. When potassium-sensitive microelectrodes were used to measure [K+]o, there was no significant increase in [K+]o in CA1 and CA3 after cesium application. In the dentate gyrus, cesium did not change the baseline level of [K+]o or the rate of [K+]o clearance after the field bursts. In cultured hippocampal neurons, which have a large and relatively unrestricted extracellular space, cesium also produced cellular burst activity without significantly changing the resting membrane potential, which might indicate an increase in [K+]o. Our results suggest that cesium causes epileptiform activity by a mechanism unrelated to an alteration in [K+]o regulation.


1999 ◽  
Vol 82 (2) ◽  
pp. 638-647 ◽  
Author(s):  
Rita Motalli ◽  
Jacques Louvel ◽  
Virginia Tancredi ◽  
Irène Kurcewicz ◽  
Doreen Wan-Chow-Wah ◽  
...  

We analyzed how the GABAB receptor agonist baclofen (10–50 μM) influences the activity induced by 4-aminopyridine (4-AP, 50 μM) in the CA3 area of hippocampal slices obtained from 12- to 25-day-old rats. Interictal and ictal discharges along with synchronous GABA-mediated potentials occurred spontaneously in the presence of 4-AP. Baclofen abolished interictal activity ( n = 29 slices) and either disclosed ( n = 21/29) or prolonged ictal discharges ( n = 8/29), whereas GABA-mediated potentials occurred at a decreased rate. The N-methyl-d-aspartate (NMDA) receptor antagonist 3,3-(2-carboxypiperazine-4-yl)-propyl-1-phosphate (CPP, 10 μM, n = 8) did not modify the GABA-mediated potentials or the ictal events recorded in 4-AP + baclofen. In contrast ictal, activity, but not GABA-mediated potentials, was blocked by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM, n = 5). Most baclofen effects were reversed by the GABAB receptor antagonist CGP 35348 (1 mM; n = 4). Baseline and transient increases in [K+]o associated with the 4-AP–induced synchronous activity were unaffected by baclofen. Baclofen hyperpolarized CA3 pyramids ( n = 8) recorded with K-acetate–filled electrodes by 4.8 ± 1.3 mV and made spontaneous, asynchronous hyperpolarizing and depolarizing potentials disappear along with interictal depolarizations. GABA-mediated synchronous long-lasting depolarizations (LLDs) and asynchronous depolarizations were also studied with KCl-filled electrodes in 4-AP + CPP + CNQX ( n = 6); under these conditions baclofen did not reduce LLD amplitude but abolished the asynchronous events. Dentate hilus stimulation at 0.2–0.8 Hz suppressed the ictal activity recorded in 4-AP + baclofen ( n = 8). Our data indicate that GABAB receptor activation by baclofen decreases transmitter release leading to disappearance of interictal activity along with asynchronous excitatory and inhibitory potentials. By contrast, GABA-mediated LLDs and ictal events, which reflect intense action potential firing invading presynaptic inhibitory and excitatory terminals respectively, are not abolished. We propose that the proconvulsant action of baclofen results from 1) block of asynchronous GABA-mediated potentials causing disinhibition and 2) activity-dependent changes in hippocampal network excitability.


2021 ◽  
Vol 22 (15) ◽  
pp. 8091
Author(s):  
Grace Jang ◽  
M. Bruce MacIver

Ketamine is a clinical anesthetic and antidepressant. Although ketamine is a known NMDA receptor antagonist, the mechanisms contributing to antidepression are unclear. This present study examined the loci and duration of ketamine’s actions, and the involvement of NMDA receptors. Local field potentials were recorded from the CA1 region of mouse hippocampal slices. Ketamine was tested at antidepressant and anesthetic concentrations. Effects of NMDA receptor antagonists APV and MK-801, GABA receptor antagonist bicuculline, and a potassium channel blocker TEA were also studied. Ketamine decreased population spike amplitudes during application, but a long-lasting increase in amplitudes was seen during washout. Bicuculline reversed the acute effects of ketamine, but the washout increase was not altered. This long-term increase was statistically significant, sustained for >2 h, and involved postsynaptic mechanisms. A similar effect was produced by MK-801, but was only partially evident with APV, demonstrating the importance of the NMDA receptor ion channel block. TEA also produced a lasting excitability increase, indicating a possible involvement of potassium channel block. This is this first report of a long-lasting increase in excitability following ketamine exposure. These results support a growing literature that increased GABA inhibition contributes to ketamine anesthesia, while increased excitatory transmission contributes to its antidepressant effects.


2005 ◽  
Vol 94 (6) ◽  
pp. 4131-4144 ◽  
Author(s):  
Ling Chen ◽  
Masahiro Sokabe

The effects of pregnenolone sulfate (PREGS), a putative neurosteroid, on the transmission of perforant path–granule cell synapses were investigated with an optical recording technique in rat hippocampal slices stained with voltage-sensitive dyes. Application of PREGS to the bath solution resulted in an acute augmentation of EPSP in a dose-dependent manner. The PREGS effect was dependent on the extracellular Ca2+ concentration ([Ca2+]o), but independent of NMDA receptor activation. PREGS caused a decrease in paired-pulse facilitation, which implies that PREGS positively modulates presynaptic neurotransmitter releases. Firmer support for this mechanism was that PREGS augmented the synaptically induced glial depolarization (SIGD) that reflects the activity of electrogenic glutamate transporters in glial cells during the uptake of released glutamate. The selective α7nAChR antagonist α-BGT or MLA prevented the SIGD increase by PREGS. Furthermore DMXB, a selective α7nAChR agonist, mimicked the PREGS effect on SIGD and antagonized the effect of PREGS. The presynaptic effect of PREGS was partially attenuated by the L-type Ca2+ channel (VGCC) blocker nifedipine. Based on these findings, we proposed a novel mechanism underlying the facilitated synaptic transmission by PREGS: this neurosteroid sensitizes presynaptic α7nAChR that is followed by an activation of L-type VGCC to increase the presynaptic glutamate release.


2006 ◽  
Vol 95 (5) ◽  
pp. 3105-3112 ◽  
Author(s):  
S. Piccinin ◽  
A. D. Randall ◽  
J. T. Brown

Synchronous neuronal firing can be induced in hippocampal slices in the absence of synaptic transmission by lowering extracellular Ca2+ and raising extracellular K+. However, the ionic mechanisms underlying this nonsynaptic synchronous firing are not well understood. In this study we have investigated the role of KCNQ /Kv7 channels in regulating this form of nonsynaptic bursting activity. Incubation of rat hippocampal slices in reduced (<0.2 mM) [Ca2+]o and increased (6.3 mM) [K+]o, blocked synaptic transmission, increased neuronal firing, and led to the development of spontaneous periodic nonsynaptic epileptiform activity. This activity was recorded extracellularly as large (4.7 ± 1.9 mV) depolarizing envelopes with superimposed high-frequency synchronous population spikes. These intraburst population spikes initially occurred at a high frequency (about 120 Hz), which decayed throughout the burst stabilizing in the gamma-frequency band (30–80 Hz). Further increasing [K+]o resulted in an increase in the interburst frequency without altering the intraburst population spike frequency. Application of retigabine (10 μM), a Kv7 channel modulator, completely abolished the bursts, in an XE-991–sensitive manner. Furthermore, application of the Kv7 channel blockers, linopirdine (10 μM) or XE-991 (10 μM) alone, abolished the gamma frequency, but not the higher-frequency population spike firing observed during low Ca2+/high K+ bursts. These data suggest that Kv7 channels are likely to play a role in the regulation of synchronous population firing activity.


1996 ◽  
Vol 76 (6) ◽  
pp. 4185-4189 ◽  
Author(s):  
J. C. Hirsch ◽  
O. Quesada ◽  
M. Esclapez ◽  
H. Gozlan ◽  
Y. Ben-Ari ◽  
...  

1. Graded N-methyl-D-aspartate receptor (NMDAR)-dependent epileptiform discharges were recorded from ex vivo hippocampal slices obtained from rats injected a week earlier with an intracerebroventricular dose of kainic acid. Intracellular recordings from pyramidal cells of the CA1 area showed that glutamate NMDAR actively participated in synaptic transmission, even at resting membrane potential. When NMDAR were pharmacologically isolated, graded burst discharges could still be evoked. 2. The oxidizing reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB, 200 microM, 15 min) suppressed the late part of the epileptiform burst that did not recover after wash but could be reinstated by the reducing agent tris (2-carboxyethyl) phosphine (TCEP, 200 microM, 15 min) and again abolished with the NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-APV). 3. Pharmacologically isolated NMDAR-mediated responses were decreased by DTNB (56 +/- 10%, mean +/- SD, n = 6), an effect reversed by TCEP. 4. When only the fast glutamateric synaptic component was blocked, NMDA-dependent excitatory postsynaptic potentials (EPSPs) could be evoked despite the presence of underlying fast and slow inhibitory postsynaptic potentials (IPSPs). DTNB decreased EPSPs to 48 +/- 12% (n = 5) of control. 5. Since a decrease of the NMDAR-mediated response by +/- 50% is sufficient to suppress the late part of the burst, we suggest that epileptiform activity can be controlled by manipulation of the redox sites of NMDAR. Our observations raise the possibility of developing new anticonvulsant drugs that would spare alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-R (AMPAR)-mediated synaptic responses and decrease NMDAR-mediated synaptic transmission without blocking it completely.


2000 ◽  
Vol 84 (3) ◽  
pp. 1279-1288 ◽  
Author(s):  
Kuei-Sen Hsu ◽  
Wen-Chia Ho ◽  
Chiung-Chun Huang ◽  
Jing-Jane Tsai

Previous work has shown that seizure-like activity can disrupt the induction of long-term potentiation (LTP). However, how seizure-like event disrupts the LTP induction remains unknown. To understand the cellular and molecular mechanisms underlying this process better, a set of studies was implemented in area CA1 of rat hippocampal slices using extracellular recording methods. We showed here that prior transient seizure-like activity generated by perfused slices with Mg2+-free artificial cerebrospinal fluid (ACSF) exhibited a persistent suppression of LTP induction. This effect lasted between 2 and 3 h after normal ACSF replacement and was specifically inhibited by N-methyl-d-aspartate (NMDA) receptor antagonistd-2-amino-5-phosphovaleric acid (d-APV) and L-type voltage-operated Ca2+ channel (VOCC) blocker nimodipine, but not by non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In addition, this suppressive effect was specifically blocked by the selective protein kinase C (PKC) inhibitor NPC-15437. However, neither Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62 nor cAMP-dependent protein kinase inhibitor Rp-adenosine 3′,5′-cyclic monophosphothioate (Rp-cAMPS) affected this suppressive effect. This persistent suppression of LTP was not secondary to the long-lasting changes in NMDA receptor activation, because the isolated NMDA receptor–mediated responses did not show a long-term enhancement in response to a 30-min Mg2+-free ACSF application. Additionally, in prior Mg2+-free ACSF–treated slices, the entire frequency-response curve of LTP and long-term depression (LTD) is shifted systematically to favor LTD. These results suggest that the increase of Ca2+ influx through NMDA channels and L-type VOCCs in turn triggering a PKC-dependent signaling cascade is a possible cellular basis underlying this seizure-like activity-induced inhibition of LTP.


1999 ◽  
Vol 81 (3) ◽  
pp. 1036-1044 ◽  
Author(s):  
Hannah Dvorak-Carbone ◽  
Erin M. Schuman

Long-term depression of temporoammonic-CA1 hippocampal synaptic transmission. The temporoammonic pathway, the direct projection from layer III of the entorhinal cortex to area CA1 of the hippocampus, includes both excitatory and inhibitory components that are positioned to be an important source of modulation of the hippocampal output. However, little is known about synaptic plasticity in this pathway. We used field recordings in hippocampal slices prepared from mature (6- to 8-wk old) rats to study long-term depression (LTD) in the temporoammonic pathway. Low-frequency (1 Hz) stimulation (LFS) for 10 min resulted in a depression of the field response that lasted for ≥1 h. This depression was saturable by multiple applications of LFS. LTD induction was unaffected by the blockade of either fast (GABAA) or slow (GABAB) inhibition. Temporoammonic LTD was inhibited by the presence of the N-methyl-d-aspartate (NMDA) receptor antagonist AP5, suggesting a dependence on calcium influx. Full recovery from depression could be induced by high-frequency (100 Hz) stimulation (HFS); in the presence of the GABAA antagonist bicuculline, HFS induced recovery above the original baseline level. Similarly, HFS or θ-burst stimulation (TBS) applied to naive slices caused little potentiation, whereas HFS or TBS applied in the presence of bicuculline resulted in significant potentiation of the temporoammonic response. Our results show that, unlike the Schaffer collateral input to CA1, the temporoammonic input in mature animals is easy to depress but difficult to potentiate.


Sign in / Sign up

Export Citation Format

Share Document