GDNF and NGF Reverse Changes in Repriming of TTX-Sensitive Na+ Currents Following Axotomy of Dorsal Root Ganglion Neurons

2002 ◽  
Vol 88 (2) ◽  
pp. 650-658 ◽  
Author(s):  
Andreas Leffler ◽  
Theodore R. Cummins ◽  
Sulayman D. Dib-Hajj ◽  
William N. Hormuzdiar ◽  
Joel A. Black ◽  
...  

Uninjured C-type rat dorsal root ganglion (DRG) neurons predominantly express slowly inactivating TTX-resistant (TTX-R) and slowly repriming TTX-sensitive (TTX-S) Na+ currents. After peripheral axotomy, TTX-R current density is reduced and rapidly repriming TTX-S currents emerge and predominate. The change in TTX-S repriming kinetics is paralleled by an increase in the level of transcripts and protein for the Nav1.3 sodium channel α-subunit, which is known to exhibit rapid repriming. Changes in Na+current profile and kinetics in DRG neurons may substantially alter neuronal excitability and could contribute to some states of chronic pain associated with injury of sensory neurons. In the present study, we asked whether glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF), which have been shown to prevent some axotomy-induced changes such as the loss of TTX-R Na+ current expression in DRG neurons, can ameliorate the axotomy-induced change in TTX-S Na+ current repriming kinetics. We show that intrathecally administered GDNF and NGF, delivered individually, can partially reverse the effect of axotomy on the repriming kinetics of TTX-S Na+ currents. When GDNF and NGF were co-administered, the repriming kinetics were fully rescued. We observed parallel effects of GDNF and NGF on the Nav1.3 sodium channel transcript levels in axotomized DRG. Both GDNF and NGF were able to partially reverse the axotomy-induced increase in Nav1.3 mRNA, with GDNF plus NGF producing the largest effect. Our data indicate that both GDNF and NGF can partially reverse an important effect of axotomy on the electrogenic properties of sensory neurons and that their effect is additive.

1995 ◽  
Vol 73 (5) ◽  
pp. 1793-1798 ◽  
Author(s):  
M. D. Womack ◽  
E. W. McCleskey

1. Using patch-clamp methods, we show that brief prepulses to very positive voltages increase (facilitate) the amplitude of current through Ca2+ channels during a subsequent test pulse in some, but not all, dorsal root ganglion (DRG) sensory neurons. The amplitude of this facilitated current generally increases when the Ca2+ channels are inhibited by activation of the mu-opioid receptor. 2. The facilitated current is blocked by omega-conotoxin GVIA, activates in the range of high-threshold Ca2+ channels, and inactivates at relatively negative holding voltages. Thus facilitated current passes through N-type Ca2+ channels, the same channels that are inhibited by opioids and control neurotransmitter release in sensory neurons. 3. Although maximal facilitation occurs only at unphysiologically high membrane potentials (above +100 mV), some facilitation is seen after prepulses to voltages reached during action potentials. After return to the holding potential, facilitation persists for hundreds of milliseconds, considerably longer than in other neurons. Brief trains of pulses designed to mimic action potentials caused small facilitation (19% of maximal) in a fraction (8 of 24) of opioid-inhibited neurons. 4. We conclude that 1) prepulses to extremely positive voltages can cause partial recovery of Ca2+ channels inhibited by opioids; and 2) small, but detectable, facilitation is also seen after physiological stimulation in some DRG neurons. Facilitation, largely considered a biophysical epiphenomenon because of the extreme voltages used to induce it, appears to be physiologically relevant during opioid inhibition of Ca2+ channels in DRG neurons.


1999 ◽  
Vol 82 (2) ◽  
pp. 700-708 ◽  
Author(s):  
Brian Everill ◽  
Jeffery D. Kocsis

Potassium currents have an important role in modulating neuronal excitability. We have investigated the effects of axotomy on three voltage-activated K+ currents, one sustained and two transient, in cutaneous afferent dorsal root ganglion (DRG) neurons. Fourteen to 21 days after axotomy, L4 and L5 DRG neurons were acutely dissociated and were studied 2–8 h after plating. Whole cell patch-clamp recordings were obtained from identified cutaneous afferent neurons (46–50 μm diam); K+ currents were isolated by blocking Na+ and Ca2+ currents with appropriate ion replacement and channel blockers. Separation of the current components was achieved on the basis of sensitivity to dendrotoxin or 4-aminopyridine and by the response to variation in conditioning voltage. Both control and injured neurons displayed qualitatively similar complex K+ currents composed of distinct kinetic and pharmacological components. Three distinct K+ current components, a sustained ( I K) and two transient ( I A and I D), were identified in variable proportions. However, total peak current was reduced by 52% in the axotomized cells when compared with control cells. Two current components were reduced after ligation, I Aby 60%, I K by over 65%, compared with control cells. I D appeared unaffected after acute ligation. These results indicate a large reduction in overall K+ current, resulting from reductions in I K and I A, on large cutaneous afferent neurons after nerve ligation and have implications for excitability changes of injured primary afferent neurons.


2017 ◽  
Vol 117 (4) ◽  
pp. 1702-1712 ◽  
Author(s):  
Mark Estacion ◽  
Stephen G. Waxman

The Nav1.7 sodium channel is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function mutations that cause the painful disorder inherited erythromelalgia (IEM) shift channel activation in a hyperpolarizing direction. When expressed within DRG neurons, these mutations produce a depolarization of resting membrane potential (RMP). The biophysical basis for the depolarized RMP has to date not been established. To explore the effect on RMP of the shift in activation associated with a prototypical IEM mutation (L858H), we used dynamic-clamp models that represent graded shifts that fractionate the effect of the mutation on activation voltage dependence. Dynamic-clamp recording from DRG neurons using a before-and-after protocol for each cell made it possible, even in the presence of cell-to-cell variation in starting RMP, to assess the effects of these graded mutant models. Our results demonstrate a nonlinear, progressively larger effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. The observed differences in RMP were predicted by the “late” current of each mutant model. Since the depolarization of RMP imposed by IEM mutant channels is known, in itself, to produce hyperexcitability of DRG neurons, the development of pharmacological agents that normalize or partially normalize activation voltage dependence of IEM mutant channels merits further study. NEW & NOTEWORTHY Inherited erythromelalgia (IEM), the first human pain disorder linked to a sodium channel, is widely regarded as a genetic model of neuropathic pain. IEM is produced by Nav1.7 mutations that hyperpolarize activation. These mutations produce a depolarization of resting membrane potential (RMP) in dorsal root ganglion neurons. Using dynamic clamp to explore the effect on RMP of the shift in activation, we demonstrate a nonlinear effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized.


2012 ◽  
Vol 303 (4) ◽  
pp. C406-C415 ◽  
Author(s):  
Elke Bocksteins ◽  
Gerda Van de Vijver ◽  
Pierre-Paul Van Bogaert ◽  
Dirk J. Snyders

Delayed rectifier voltage-gated K+ (KV) channels are important determinants of neuronal excitability. However, the large number of KV subunits poses a major challenge to establish the molecular composition of the native neuronal K+ currents. A large part (∼60%) of the delayed rectifier current ( IK) in small mouse dorsal root ganglion (DRG) neurons has been shown to be carried by both homotetrameric KV2.1 and heterotetrameric channels of KV2 subunits with silent KV subunits (KVS), while a contribution of KV1 channels has also been demonstrated. Because KV3 subunits also generate delayed rectifier currents, we investigated the contribution of KV3 subunits to IK in small mouse DRG neurons. After stromatoxin (ScTx) pretreatment to block the KV2-containing component, application of 1 mM TEA caused significant additional block, indicating that the ScTx-insensitive part of IK could include KV1, KV3, and/or M-current channels (KCNQ2/3). Combining ScTx and dendrotoxin confirmed a relevant contribution of KV2 and KV2/KVS, and KV1 subunits to IK in small mouse DRG neurons. After application of these toxins, a significant TEA-sensitive current (∼19% of total IK) remained with biophysical properties that corresponded to those of KV3 currents obtained in expression systems. Using RT-PCR, we detected KV3.1–3 mRNA in DRG neurons. Furthermore, Western blot and immunocytochemistry using KV3.1-specific antibodies confirmed the presence of KV3.1 in cultured DRG neurons. These biophysical, pharmacological, and molecular results demonstrate a relevant contribution (∼19%) of KV3-containing channels to IK in small mouse DRG neurons, supporting a substantial role for KV3 subunits in these neurons.


MedChemComm ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 1673-1678
Author(s):  
Oliver John V. Belleza ◽  
Jortan O. Tun ◽  
Gisela P. Concepcion ◽  
Aaron Joseph L. Villaraza

Nobilamide B, a TRPV1 antagonist, and a series of Ala-substituted analogues were synthesized and their neuroactivity was assessed in a primary culture of dorsal root ganglion (DRG) neurons.


Development ◽  
2002 ◽  
Vol 129 (11) ◽  
pp. 2639-2648 ◽  
Author(s):  
Robert A. Cornell ◽  
Judith S. Eisen

In zebrafish, cells at the lateral edge of the neural plate become Rohon-Beard primary sensory neurons or neural crest. Delta/Notch signaling is required for neural crest formation. ngn1 is expressed in primary neurons; inhibiting Ngn1 activity prevents Rohon-Beard cell formation but not formation of other primary neurons. Reducing Ngn1 activity in embryos lacking Delta/Notch signaling restores neural crest formation, indicating Delta/Notch signaling inhibits neurogenesis without actively promoting neural crest. Ngn1 activity is also required for later development of dorsal root ganglion sensory neurons; however, Rohon-Beard neurons and dorsal root ganglion neurons are not necessarily derived from the same precursor cell. We propose that temporally distinct episodes of Ngn1 activity in the same precursor population specify these two different types of sensory neurons.


1994 ◽  
Vol 71 (1) ◽  
pp. 271-279 ◽  
Author(s):  
R. S. Scroggs ◽  
S. M. Todorovic ◽  
E. G. Anderson ◽  
A. P. Fox

1. The distribution of IH, IIR, and ILEAK was studied in different diameter rat dorsal root ganglion (DRG) neuron cell bodies (neurons). DRG neurons were studied in three diameter ranges: small (19–27 microns), medium (33–37 microns), and large (44-54 microns). IH was defined as a slowly activating inward current evoked by hyperpolarizing voltage steps from a holding potential (HP) of -60 mV, and blocked by 1 mM Cs2+ but not 1 mM Ba2+. Inward rectifier current (IIR) was defined as a rapidly activating current evoked by hyperpolarizations from HP -60 mV, which rectified inwardly around the reversal potential for potassium (EK), and was completely blocked by 100 microM Ba2+. ILEAK was defined as an outward resting current at HP -60 mV, which did not rectify and was blocked by 100 microM Ba2+ but not by 2 mM Cs+. 2. IH was observed in 23 of 23 large, 11 of 12 medium, and in 9 of 20 small diameter DRG neurons tested. Peak IH normalized to membrane surface area was significantly greater in large than in medium or small diameter DRG neurons expressing IH. All neurons exhibiting IH under voltage clamp conditions had short duration action potentials and exhibited time-dependent rectification under current clamp conditions, properties similar to A-type DRG neurons. The 11 small diameter neurons not expressing IH had long duration action potentials and did not exhibit time-dependent rectification, properties similar to C-type DRG neurons. 3. IIR was detected in 18 of 22 medium diameter neurons tested.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 47 (7) ◽  
pp. 3253-3260
Author(s):  
Huaishuang Shen ◽  
Minfeng Gan ◽  
Huilin Yang ◽  
Jun Zou

Objective Neurobiology studies are increasingly focused on the dorsal root ganglion (DRG), which plays an important role in neuropathic pain. Existing DRG neuron primary culture methods have considerable limitations, including challenging cell isolation and poor cell yield, which cause difficulty in signaling pathway studies. The present study aimed to establish an integrated primary culture method for DRG neurons. Methods DRGs were obtained from fetal rats by microdissection, and then dissociated with trypsin. The dissociated neurons were treated with 5-fluorouracil to promote growth of neurons from the isolated cells. Then, reverse transcription polymerase chain reaction and immunofluorescence assays were used to identify and purify DRG neurons. Results Isolated DRGs were successfully dissociated and showed robust growth as individual DRG neurons in neurobasal medium. Both mRNA and protein assays confirmed that DRG neurons expressed neurofilament-200 and neuron-specific enolase. Conclusions Highly purified, stable DRG neurons could be easily harvested and grown for extended periods by using this integrated cell isolation and purification method, which may help to elucidate the mechanisms underlying neuropathic pain.


1999 ◽  
Vol 82 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Y. Valeyev ◽  
John C. Hackman ◽  
Alice M. Holohean ◽  
Patrick M. Wood ◽  
Jennifer L. Katz ◽  
...  

γ-Aminobutyric acid (GABA)-activated channels in embryonic (5–8 wk old) human dorsal root ganglion (DRG) neurons in dissociated culture were characterized by whole cell and single-channel techniques. All DRG neurons when held at negative holding membrane potentials displayed inward current to micromolar concentrations of GABA applied by pressure pulses from closely positioned micropipettes. The current was directly proportional to the concentration of GABA (EC50, 111 μM; Hill coefficient, 1.7). DRG neurons also responded to micromolar concentrations of pentobarbital and alphaxalone but not to cis-4-aminocrotonic acid (CACA), glycine, or taurine. Baclofen (100 μM) affected neither the holding currents nor K+ conductance (when patch pipettes were filled with 130 mM KCl) caused by depolarizing pulses. Whole cell GABA-currents were blocked by bicuculline, picrotoxin, and t-butylbicyclophosphorothionate (TBPS; all at 100 μM). The reversal potential of whole cell GABA-currents was close to the theoretical Cl− equilibrium potential, shifting with changes in intracellular Cl− concentration in a manner expected for Cl−-selective channels. The whole cell I-V curve for GABA-induced currents demonstrated slight outward rectification with nearly symmetrical outside and inside Cl− concentrations. Spectral analysis of GABA-induced membrane current fluctuations showed that the kinetic components were best fitted by a triple Lorentzian function. The apparent elementary conductance for GABA-activated Cl− channels determined from the power spectra was 22.6 pS. Single-channel recordings from cell-attached patches with pipettes containing 10 μM GABA indicated that GABA-activated channels have a main and a subconductance level with values of 30 and 19 pS, respectively. Mean open and closed times of the channel were characterized by two or three exponential decay functions, suggesting two or three open channel states and two closed states. Single channels showed a lack of rectification. The actions of GABA on cultured human embryonic DRG neurons are mediated through the activation of GABAA receptors with properties corresponding to those found in the CNS of human and other mammalian species but differing from those of cultured human adult DRG neurons.


Sign in / Sign up

Export Citation Format

Share Document