Area Spt in the Human Planum Temporale Supports Sensory-Motor Integration for Speech Processing

2009 ◽  
Vol 101 (5) ◽  
pp. 2725-2732 ◽  
Author(s):  
Gregory Hickok ◽  
Kayoko Okada ◽  
John T. Serences

Processing incoming sensory information and transforming this input into appropriate motor responses is a critical and ongoing aspect of our moment-to-moment interaction with the environment. While the neural mechanisms in the posterior parietal cortex (PPC) that support the transformation of sensory inputs into simple eye or limb movements has received a great deal of empirical attention—in part because these processes are easy to study in nonhuman primates—little work has been done on sensory-motor transformations in the domain of speech. Here we used functional magnetic resonance imaging and multivariate analysis techniques to demonstrate that a region of the planum temporale (Spt) shows distinct spatial activation patterns during sensory and motor aspects of a speech task. This result suggests that just as the PPC supports sensorimotor integration for eye and limb movements, area Spt forms part of a sensory-motor integration circuit for the vocal tract.

2022 ◽  
Vol 73 (1) ◽  
pp. 131-158
Author(s):  
Richard A. Andersen ◽  
Tyson Aflalo ◽  
Luke Bashford ◽  
David Bjånes ◽  
Spencer Kellis

Traditional brain–machine interfaces decode cortical motor commands to control external devices. These commands are the product of higher-level cognitive processes, occurring across a network of brain areas, that integrate sensory information, plan upcoming motor actions, and monitor ongoing movements. We review cognitive signals recently discovered in the human posterior parietal cortex during neuroprosthetic clinical trials. These signals are consistent with small regions of cortex having a diverse role in cognitive aspects of movement control and body monitoring, including sensorimotor integration, planning, trajectory representation, somatosensation, action semantics, learning, and decision making. These variables are encoded within the same population of cells using structured representations that bind related sensory and motor variables, an architecture termed partially mixed selectivity. Diverse cognitive signals provide complementary information to traditional motor commands to enable more natural and intuitive control of external devices.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Guilhem Ibos ◽  
David J Freedman

Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for).


2020 ◽  
Vol 08 (01) ◽  
pp. 32-39
Author(s):  
Jiawei Han

Neural damage has been a great challenge to the medical field for a very long time. The emergence of brain–computer interfaces (BCIs) offered a new possibility to enhance the activity of daily living and provide a new formation of entertainment for those with disabilities. Intracortical BCIs, which require the implantation of microelectrodes, can receive neuronal signals with a high spatial and temporal resolution from the individual’s cortex. When BCI decoded cortical signals and mapped them to external devices, it displayed the ability not only to replace part of the human motor function but also to help individuals restore certain neurological functions. In this review, we focus on human intracortical BCI research using microelectrode arrays and summarize the main directions and the latest results in this field. In general, we found that intracortical BCI research based on motor neuroprosthetics and functional electrical stimulation have already achieved some simple functional replacement and treatment of motor function. Pioneering work in the posterior parietal cortex has given us a glimpse of the potential that intracortical BCIs have to control external devices and receive various sensory information.


2016 ◽  
Vol 116 (4) ◽  
pp. 1885-1899 ◽  
Author(s):  
Tobias Heed ◽  
Frank T. M. Leone ◽  
Ivan Toni ◽  
W. Pieter Medendorp

It has been proposed that the posterior parietal cortex (PPC) is characterized by an effector-specific organization. However, strikingly similar functional MRI (fMRI) activation patterns have been found in the PPC for hand and foot movements. Because the fMRI signal is related to average neuronal activity, similar activation levels may result either from effector-unspecific neurons or from intermingled subsets of effector-specific neurons within a voxel. We distinguished between these possibilities using fMRI repetition suppression (RS). Participants made delayed, goal-directed eye, hand, and foot movements to visual targets. In each trial, the instructed effector was identical or different to that of the previous trial. RS effects indicated an attenuation of the fMRI signal in repeat trials. The caudal PPC was active during the delay but did not show RS, suggesting that its planning activity was effector independent. Hand and foot-specific RS effects were evident in the anterior superior parietal lobule (SPL), extending to the premotor cortex, with limb overlap in the anterior SPL. Connectivity analysis suggested information flow between the caudal PPC to limb-specific anterior SPL regions and between the limb-unspecific anterior SPL toward limb-specific motor regions. These results underline that both function and effector specificity should be integrated into a concept of PPC action representation not only on a regional but also on a fine-grained, subvoxel level.


2012 ◽  
Vol 107 (9) ◽  
pp. 2352-2365 ◽  
Author(s):  
Steve W. C. Chang ◽  
Lawrence H. Snyder

Neurons in the parietal reach region (PRR) have been implicated in the sensory-to-motor transformation required for reaching toward visually defined targets. The neurons in each cortical hemisphere might be specifically involved in planning movements of just one limb, or the PRR might code reach endpoints generically, independent of which limb will actually move. Previous work has shown that the preferred directions of PRR neurons are similar for right and left limb movements but that the amplitude of modulation may vary greatly. We now test the hypothesis that frames of reference and eye and hand gain field modulations will, like preferred directions, be independent of which hand moves. This was not the case. Many neurons show clear differences in both the frame of reference as well as in direction and strength of gain field modulations, depending on which hand is used to reach. The results suggest that the information that is conveyed from the PRR to areas closer to the motor output (the readout from the PRR) is different for each limb and that individual PRR neurons contribute either to controlling the contralateral-limb or else bimanual-limb control.


2012 ◽  
Vol 107 (11) ◽  
pp. 3190-3199 ◽  
Author(s):  
Anke Karabanov ◽  
Seung-Hyun Jin ◽  
Atte Joutsen ◽  
Brach Poston ◽  
Joshua Aizen ◽  
...  

Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC–M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group ( n = 8) learned by visual and the other ( n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC–M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC–M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal–motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC–M1 connectivity returns to baseline.


Neurology ◽  
1997 ◽  
Vol 49 (5) ◽  
pp. 1370-1377 ◽  
Author(s):  
Stefan F. Bucher ◽  
Marianne Dieterich ◽  
Klaus C. Seelos ◽  
Thomas Brandt

Self-motion or object motion can elicit optokinetic nystagmus (OKN), which is an integral part of dynamic spatial orientation. We used functional MR imaging during horizontal OKN to study cerebral activation patterns in sensory and ocular motor areas in 10 subjects. We found activation bilaterally in the primary visual cortex, the motion-sensitive areas in the occipitotemporal cortex (the middle temporal and medial superior temporal areas), and in areas known to control several types of saccades such as the precentral and posterior median frontal gyrus, the posterior parietal cortex, and the medial part of the superior frontal gyrus (frontal, parietal, and supplementary eye fields). Additionally, we observed cortical activation in the anterior and posterior parts of the insula and in the prefrontal cortex. Bilateral activation of subcortical structures such as the putamen, globus pallidus, caudate nucleus, and the thalamus traced the efferent pathways of OKN down to the brainstem. Functional MRI during OKN revealed a complex cerebral network of sensorimotor cortical and subcortical activation.


2018 ◽  
Vol 39 (3) ◽  
pp. 485-502 ◽  
Author(s):  
Shogo Soma ◽  
Junichi Yoshida ◽  
Shigeki Kato ◽  
Yukari Takahashi ◽  
Satoshi Nonomura ◽  
...  

1980 ◽  
Vol 3 (4) ◽  
pp. 485-499 ◽  
Author(s):  
James C. Lynch

AbstractPosterior parietal cortex has traditionally been considered to be a sensory association area in which higher-order processing and intermodal integration of incoming sensory information occurs. In this paper, evidence from clinical reports and from lesion and behavioral-electrophysiological experiments using monkeys is reviewed and discussed in relation to the overall functional organization of posterior parietal association cortex, and particularly with respect to a proposed posterior parietal mechanism concerned with the initiation and control of certain classes of eye and limb movements. Preliminary data from studies of the effects of posterior parietal lesions on oculomotor control in monkeys are reported.The behavioral effects of lesions of posterior parietal cortex in monkeys have been found to be similar to those which follow analogous damage of the minor hemisphere in humans, while behavioral-electrophysiological experiments have disclosed classes of neurons in this area which have functional properties closely related to the behavioral acts that are disrupted by lesions of the area. On the basis of current data from these areas of study, it is proposed that the sensory association model of posterior parietal function is inadequate to account for the complexities of the present evidence. Instead, it now appears that many diverse neural mechanisms are locatedin partin parietal cortex, that some of these mechanisms are involved in sensory processing and perceptual functions, but that others participate in motor control, and that still others are involved in attentional, motivational, or emotional processes. It is further proposed that the elementary units of these various neural mechanisms are distributed within posterior parietal cortex according to the columnar hypothesis of Mountcastle.


Sign in / Sign up

Export Citation Format

Share Document