Vascular Endothelial Protein Tyrosine Phosphatase Regulates Endothelial Function

Physiology ◽  
2021 ◽  
Vol 36 (2) ◽  
pp. 84-93
Author(s):  
Dietmar Vestweber

Vascular endothelial protein tyrosine phosphatase (VE-PTP) is a receptor-type PTP (RPTP), predominantly expressed in vascular endothelial cells. It regulates embryonic and tumor angiogenesis and controls vascular permeability and homeostasis in inflammation. Major substrates are the tyrosine kinase receptor Tie-2 and the adhesion molecule VE-cadherin. This review describes how VE-PTP controls vascular functions by its various substrates and the therapeutic potential of VE-PTP in various pathophysiological settings.

2014 ◽  
Vol 289 (10) ◽  
pp. 6451-6461 ◽  
Author(s):  
Kemala Isnainiasih Mantilidewi ◽  
Yoji Murata ◽  
Munemasa Mori ◽  
Chihiro Otsubo ◽  
Takenori Kotani ◽  
...  

2020 ◽  
Vol 401 (10) ◽  
pp. 1167-1180
Author(s):  
María Eugenia Chamorro ◽  
Romina Maltaneri ◽  
Agustina Schiappacasse ◽  
Alcira Nesse ◽  
Daniela Vittori

AbstractThe proliferation and migration of endothelial cells are vascular events of inflammation, a process which can also potentiate the effects of promigratory factors. With the aim of investigating possible modifications in the activity of erythropoietin (Epo) in an inflammatory environment, we found that Epo at a non-promigratory concentration was capable of stimulating EA.hy926 endothelial cell migration when TNF-α was present. VCAM-1 and ICAM-1 expression, as well as adhesion of monocytic THP-1 cells to endothelial layers were also increased. Structurally modified Epo (carbamylation or N-homocysteinylation) did not exhibit these effects. The sensitizing effect of TNF-α on Epo activity was mediated by the Epo receptor. Inhibition assays targeting the PI3K/mTOR/NF-κB pathway, shared by Epo and TNF-α, show a cross-talk between both cytokines. As observed in assays using antioxidants, cell migration elicited by TNF-α + Epo depended on TNF-α-generated reactive oxygen species (ROS). ROS-mediated inactivation of protein tyrosine phosphatase 1B (PTP1B), involved in Epo signaling termination, could explain the synergistic effect of these cytokines. Our results suggest that ROS generated by inflammation inactivate PTP1B, causing the Epo signal to last longer. This mechanism, along with the cross-talk between both cytokines, could explain the sensitizing action of TNF-α on the migratory effect of Epo.


2000 ◽  
Vol 113 (17) ◽  
pp. 3117-3123 ◽  
Author(s):  
C. Wadham ◽  
J.R. Gamble ◽  
M.A. Vadas ◽  
Y. Khew-Goodall

Pez is a non-transmembrane tyrosine phosphatase with homology to the FERM (4.1, ezrin, radixin, moesin) family of proteins. The subcellular localisation of Pez in endothelial cells was found to be regulated by cell density and serum concentration. In confluent monolayers Pez was cytoplasmic, but in cells cultured at low density Pez was nuclear, suggesting that it is a nuclear protein in proliferating cells. This notion is supported by the loss of nuclear Pez when cells are serum-starved to induce quiescence, and the rapid return of Pez to the nucleus upon refeeding with serum to induce proliferation. Vascular endothelial cells normally exist as a quiescent confluent monolayer but become proliferative during angiogenesis or upon vascular injury. Using a ‘wound’ assay to mimic these events in vitro, Pez was found to be nuclear in the cells that had migrated and were proliferative at the ‘wound’ edge. TGFbeta, which inhibits cell proliferation but not migration, inhibited the translocation of Pez to the nucleus in the cells at the ‘wound’ edge, further strengthening the argument that Pez plays a role in the nucleus during cell proliferation. Together, the data presented indicate that Pez is a nuclear tyrosine phosphatase that may play a role in cell proliferation.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Jung-Joon Cha ◽  
Hoyeon Lee ◽  
Miyoung Kim ◽  
Juyoung Kang ◽  
Hanlim Song ◽  
...  

Abstract Vascular endothelial cells are essential to vascular function and maintenance. Dysfunction of these cells can lead to the development of cardiovascular disease or contribute to tumorigenesis. As such, the therapeutic modulation and monitoring of vascular endothelial cells are of significant clinical interest, and several endothelial-specific ligands have been developed for drug delivery and the monitoring of endothelial function. However, the application of these ligands has been limited by their high cost and tendency to induce immune responses, highlighting a need for alternate methods of targeting vascular endothelial cells. In the present study, we explore the therapeutic potential of DNA aptamers. Using cell-SELEX technology, we identified two aptamers with specific binding affinity for vascular endothelial cells and propose that these molecules show potential for use as new ligands for drug and biomarker research concerning vascular endothelial cells.


2020 ◽  
Author(s):  
Yu Yan ◽  
Qiang Song ◽  
Li Yao ◽  
Liang Zhao ◽  
Hui Cai

Abstract Background:The YAP signaling pathway is altered and implicated as oncogenic in human mammary cancers.However, roles of YAP signaling that regulate the breast tumor angiogenesis have remained elusive. Tumor angiogenesis is coordinated by the activation of both cancer cells and vascular endothelial cells. Whether the YAP signalingpathway can regulate the intercellular interaction between cancer cells and endothelial cellsis essentially unknown.Results: We showed here that conditioned media from YAP overexpressed breast cancer cells (CM-YAP+) could promote angiogenesis, accompanied byincreased tube formation, migration, and proliferation of human umbilical vein endothelial cells (HUVECs). Down regulation of YAP in HUVECs reversed CM-YAP+ induced angiogenesis.CM-YAP+ time-dependently activated YAP inHUVECs by dephosphorylating YAP and increasing nuclear translocation.We also identified that both G13-RhoA and PI3K/Akt signaling pathway were necessary for CM-YAP+ induced activation of YAP.Besides, connective tissue growth factor (CTGF) and angiopoietin-2 (ANG-2)actedas down-stream of YAP in HUVECs to promote angiogenesis.In addition, subcutaneous tumors nude mice model demonstrated that tumors overexpressed YAP revealed moreneovascularization in vivo.Conclusions: YAP-YAP interaction between breastcancer cells and endothelial cellscould promote tumor angiogenesis, supporting that YAP is a potential marker and target fordeveloping novel therapeutic strategies against breast cancer.


Sign in / Sign up

Export Citation Format

Share Document