scholarly journals Immobilized DNA aptamers used as potent attractors for vascular endothelial cell: in vitro study of female rat

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Jung-Joon Cha ◽  
Hoyeon Lee ◽  
Miyoung Kim ◽  
Juyoung Kang ◽  
Hanlim Song ◽  
...  

Abstract Vascular endothelial cells are essential to vascular function and maintenance. Dysfunction of these cells can lead to the development of cardiovascular disease or contribute to tumorigenesis. As such, the therapeutic modulation and monitoring of vascular endothelial cells are of significant clinical interest, and several endothelial-specific ligands have been developed for drug delivery and the monitoring of endothelial function. However, the application of these ligands has been limited by their high cost and tendency to induce immune responses, highlighting a need for alternate methods of targeting vascular endothelial cells. In the present study, we explore the therapeutic potential of DNA aptamers. Using cell-SELEX technology, we identified two aptamers with specific binding affinity for vascular endothelial cells and propose that these molecules show potential for use as new ligands for drug and biomarker research concerning vascular endothelial cells.

Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


Endocrinology ◽  
2007 ◽  
Vol 149 (3) ◽  
pp. 889-898 ◽  
Author(s):  
Dongmin Liu ◽  
Mary Iruthayanathan ◽  
Laurie L. Homan ◽  
Yiqiang Wang ◽  
Lingling Yang ◽  
...  

Dehydroepiandrosterone (DHEA) activates a plasma membrane receptor on vascular endothelial cells and phosphorylates ERK 1/2. We hypothesize that ERK1/2-dependent vascular endothelial proliferation underlies part of the beneficial vascular effect of DHEA. DHEA (0.1–10 nm) activated ERK1/2 in bovine aortic endothelial cells (BAECs) by 15 min, causing nuclear translocation of phosphorylated ERK1/2 and phosphorylation of nuclear p90 ribosomal S6 kinase. ERK1/2 phosphorylation was dependent on plasma membrane-initiated activation of Gi/o proteins and the upstream MAPK kinase because the effect was seen with albumin-conjugated DHEA and was blocked by pertussis toxin or PD098059. A 15-min incubation of BAECs with 1 nm DHEA (or albumin-conjugated DHEA) increased endothelial proliferation by 30% at 24 h. This effect was not altered by inhibition of estrogen or androgen receptors or nitric oxide production. There was a similar effect of DHEA to increase endothelial migration. DHEA also increased the formation of primitive capillary tubes of BAECs in vitro in solubilized basement membrane. These rapid DHEA-induced effects were reversed by the inhibition of either Gi/o-proteins or ERK1/2. Additionally, DHEA enhanced angiogenesis in vivo in a chick embryo chorioallantoic membrane assay. These findings indicate that exposure to DHEA, at concentrations found in human blood, causes vascular endothelial proliferation by a plasma membrane-initiated activity that is Gi/o and ERK1/2 dependent. These data, along with previous findings, define an important vascular endothelial cell signaling pathway that is activated by DHEA and suggest that this steroid may play a role in vascular function.


Development ◽  
1995 ◽  
Vol 121 (4) ◽  
pp. 1089-1098 ◽  
Author(s):  
T.M. Schlaeger ◽  
Y. Qin ◽  
Y. Fujiwara ◽  
J. Magram ◽  
T.N. Sato

Vascular endothelial cells play essential roles in the function and development of the cardiovascular system. However, due to the lack of lineage-specific markers suitable for molecular and biochemical analyses, very little is known about the molecular mechanisms that regulate endothelial cell differentiation. We report the first vascular endothelial cell lineage-specific (including angioblastic precursor cells) 1.2 kb promoter in transgenic mice. Moreover, deletion analysis of this promoter region in transgenic embryos revealed multiple elements that are required for the maximum endothelial cell lineage-specific expression. This is a powerful molecular tool that will enable us to identify factors and cellular signals essential for the establishment of vascular endothelial cell lineage. It will also allow us to deliver genes specifically into this cell type in vivo to test specifically molecules that have been implicated in cardiovascular development. Furthermore, we have established embryonic stem (ES) cells from the blastocysts of the transgenic mouse that carry the 1.2 kb promoter-LacZ reporter transgene. These ES cells were able to differentiate in vitro to form cystic embryoid bodies (CEB) that contain endothelial cells determined by PECAM immunohistochemistry. However, these in vitro differentiated endothelial cells did not express the LacZ reporter gene. This indicates the lack of factors and/or cellular interactions which are required to induce the expression of the reporter gene mediated by this 1.2 kb promoter in this in vitro differentiation system. Thus this system will allow us to screen for the putative inducers that exist in vivo but not in vitro. These putative inducers are presumably important for in vivo differentiation of vascular endothelial cells.


2007 ◽  
Vol 28 (2) ◽  
pp. 312-328 ◽  
Author(s):  
Luca Cucullo ◽  
Pierre-Olivier Couraud ◽  
Babette Weksler ◽  
Ignacio-Andres Romero ◽  
Mohammed Hossain ◽  
...  

In evaluating drugs that enter or are excluded from the brain, novel pharmaceutical strategies are needed. For this reason, we have developed a humanized Dynamic In vitro Blood—Brain Barrier model (hDIV-BBB) based on a novel human brain vascular endothelial cell line (HCMEC/D3), which closely mimics the BBB in vivo. In this system, HCMEC/D3 was grown in the lumen of hollow microporous fibers and exposed to a physiological pulsatile flow. Comparison with well-established humanized DIV-BBB models (based on human brain and non-brain vascular endothelial cells co-cultured with abluminal astrocytes) demonstrated that HCMEC/D3 cells cultured under flow conditions maintain in vitro physiological permeability barrier properties of the BBB in situ even in the absence of abluminal astrocytes. Measurements of glucose metabolism demonstrated that HCMEC/D3 cells retain an aerobic metabolic pathway. Permeability to sucrose and two relevant central nervous system drugs showed that the HCMEC/D3 cells grown under dynamic conditions closely mimic the physiological permeability properties of the BBB in situ (slope = 0.93). Osmotic disruption of the BBB was also successfully achieved. Peak BBB opening in the DIV-BBB lasted from 20 to 30 mins and was completely reversible. Furthermore, the sequence of flow cessation/reperfusion in the presence of leukocytes led to BBB failure as demonstrated by a biphasic decrease in transendothelial electrical resistance. Additionally, BBB failure was paralleled by the intraluminal release of proinflammatory factors (interleukin-6 and interleukin-1β) and matrix metalloproteinase-9 (MMP-9). Pretreatment with ibuprofen (0.125 mmol/L) prevented BBB failure by decreasing the inflammatory response after flow cessation/reperfusion.


1995 ◽  
Vol 74 (04) ◽  
pp. 1045-1049 ◽  
Author(s):  
P Butthep ◽  
A Bunyaratvej ◽  
Y Funahara ◽  
H Kitaguchi ◽  
S Fucharoen ◽  
...  

SummaryAn increased level of plasma thrombomodulin (TM) in α- and β- thalassaemia was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Nonsplenectomized patients with β-thalassaemia/ haemoglobin E (BE) had higher levels of TM than splenectomized cases (BE-S). Patients with leg ulcers (BE-LU) were found to have the highest increase in TM level. Appearance of larger platelets in all types of thalassaemic blood was observed indicating an increase in the number of younger platelets. These data indicate that injury of vascular endothelial cells is present in thalassaemic patients.


1996 ◽  
Vol 316 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Ralf BIRKENHÄGER ◽  
Bernard SCHNEPPE ◽  
Wolfgang RÖCKL ◽  
Jörg WILTING ◽  
Herbert A. WEICH ◽  
...  

Vascular endothilial growth factor (VEGF) and placenta growth factor (PIGF) are members of a dimeric-growth-factor family with angiogenic properties. VEGF is a highly potent and specific mitogen for endothelial cells, playing a vital role in angiogenesis in vivo. The role of PIGF is less clear. We expressed the monomeric splice forms VEGF-165, VEGF-121, PIGF-1 and PlGF-2 as unfused genes in Escherichia coli using the pCYTEXP expression system. In vitro dimerization experiments revealed that both homo- and hetero-dimers can be formed from these monomeric proteins. The dimers were tested for their ability to promote capillary growth in vivo and stimulate DNA synthesis in cultured human vascular endothelial cells. Heterodimers comprising different VEGF splice forms, or combinations of VEGF/PlGF splice forms, showed mitogenic activity. The results demonstrate that four different heterodimeric growth factors are likely to have as yet uncharacterized functions in vivo.


2018 ◽  
Vol 47 (1) ◽  
pp. 453-469 ◽  
Author(s):  
Ying Yang ◽  
Hui Luo ◽  
Can Zhou ◽  
Rongyi Zhang ◽  
Si Liu ◽  
...  

Objective This study aimed to examine regulation of capillary tubules and lipid formation in vascular endothelial cells and macrophages via extracellular vesicle-mediated microRNA (miRNA)-4306 transfer Methods Whole blood samples (12 mL) were collected from 53 patients, and miR-4306 levels in extracellular vesicles (EVs) were analyzed by reverse transcription-polymerase chain reaction. Human coronary artery vascular endothelial cells (HCAECs) and human monocyte-derived macrophages (HMDMs) were transfected with a scrambled oligonucleotide, an miR-4306 mimic, or an anti-miR-4306 inhibitor. The direct effect of miR-4306 on the target gene was analyzed by a dual-luciferase reporter assay. Results EV-contained miR-4306 released from HMDMs was significantly upregulated in coronary artery disease. Oxidized low-density lipoprotein (ox-LDL)-stimulated HMDM-derived EVs inhibited proliferation, migration, and angiogenesis abilities of HCAECs in vitro. However, ox-LDL-stimulated HCAEC-derived EVs enhanced lipid formation of HMDMs. The possible mechanism of these findings was partly due to EV-mediated miR-4306 upregulation of the Akt/nuclear factor kappa B signaling pathway. Conclusions Paracrine cellular crosstalk between HCAECs and HMDMs probably supports the pro-atherosclerotic effects of EVs under ox-LDL stress.


Sign in / Sign up

Export Citation Format

Share Document