scholarly journals AMPK: Regulating Energy Balance at the Cellular and Whole Body Levels

Physiology ◽  
2014 ◽  
Vol 29 (2) ◽  
pp. 99-107 ◽  
Author(s):  
D. Grahame Hardie ◽  
Michael L. J. Ashford

AMP-activated protein kinase appears to have evolved in single-celled eukaryotes as an adenine nucleotide sensor that maintains energy homeostasis at the cellular level. However, during evolution of more complex multicellular organisms, the system has adapted to interact with hormones so that it also plays a key role in balancing energy intake and expenditure at the whole body level.

2019 ◽  
Vol 47 (2) ◽  
pp. 733-741 ◽  
Author(s):  
Ana Laura de Souza Almeida Matos ◽  
Jonathan S. Oakhill ◽  
José Moreira ◽  
Kim Loh ◽  
Sandra Galic ◽  
...  

Abstract The AMP (adenosine 5′-monophosphate)-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis that co-ordinates metabolic processes to ensure energy supply meets demand. At the cellular level, AMPK is activated by metabolic stresses that increase AMP or adenosine 5′-diphosphate (ADP) coupled with falling adenosine 5′-triphosphate (ATP) and acts to restore energy balance by choreographing a shift in metabolism in favour of energy-producing catabolic pathways while inhibiting non-essential anabolic processes. AMPK also regulates systemic energy balance and is activated by hormones and nutritional signals in the hypothalamus to control appetite and body weight. Failure to maintain energy balance plays an important role in chronic diseases such as obesity, type 2 diabetes and inflammatory disorders, which has prompted a major drive to develop pharmacological activators of AMPK. An array of small-molecule allosteric activators has now been developed, several of which can activate AMPK by direct allosteric activation, independently of Thr172 phosphorylation, which was previously regarded as indispensable for AMPK activity. In this review, we summarise the state-of-the-art regarding our understanding of the molecular mechanisms that govern direct allosteric activation of AMPK by adenylate nucleotides and small-molecule drugs.


2007 ◽  
Vol 32 (5) ◽  
pp. 852-856 ◽  
Author(s):  
Sean L. McGee

Exercise increases the metabolic capacity of skeletal muscle, which improves whole-body energy homeostasis and contributes to the positive health benefits of exercise. This is, in part, mediated by increases in the expression of a number of metabolic enzymes, regulated largely at the level of transcription. At a molecular level, many of these genes are regulated by the class II histone deacetylase (HDAC) family of transcriptional repressors, in particular HDAC5, through their interaction with myocyte enhancer factor 2 transcription factors. HDAC5 kinases, including 5′-AMP-activated protein kinase and protein kinase D, appear to regulate skeletal muscle metabolic gene transcription by inactivating HDAC5 and inducing HDAC5 nuclear export. These mechanisms appear to participate in exercise-induced gene expression and could be important for skeletal muscle adaptations to exercise.


Author(s):  
D. Grahame Hardie ◽  
A. Mark Evans

AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that monitors the levels of AMP and ADP relative to ATP. If increases in AMP:ATP and/or ADP:ATP ratios are detected (indicating a reduction in cellular energy status), AMPK is activated by the canonical mechanism involving both allosteric activation and enhanced net phosphorylation at Thr172 on the catalytic subunit. Once activated, AMPK phosphorylates dozens of downstream targets, thus switching on catabolic pathways that generate ATP and switching off anabolic pathways and other energy-consuming processes. AMPK can also be activated by non-canonical mechanisms, triggered either by glucose starvation by a mechanism independent of changes in adenine nucleotides, or by increases in intracellular Ca2+ in response to hormones, mediated by the alternate upstream kinase CaMKK2. AMPK is expressed in almost all eukaryotic cells, including neurons, as heterotrimeric complexes comprising a catalytic α subunit and regulatory β and γ subunits. The α subunits contain the kinase domain and regulatory regions that interact with the other two subunits. The β subunits contain a domain that, with the small lobe of the kinase domain on the α subunit, forms the “ADaM” site that binds synthetic drugs that are potent allosteric activators of AMPK, while the γ subunits contain the binding sites for the classical regulatory nucleotides, AMP, ADP, and ATP. Although much undoubtedly remains to be discovered about the roles of AMPK in the nervous system, emerging evidence has confirmed the proposal that, in addition to its universal functions in regulating energy balance at the cellular level, AMPK also has cell- and circuit-specific roles at the whole-body level, particularly in energy homeostasis. These roles are mediated by phosphorylation of neural-specific targets such as ion channels, distinct from the targets by which AMPK regulates general, cell-autonomous energy balance. Examples of these cell- and circuit-specific functions discussed in this review include roles in the hypothalamus in balancing energy intake (feeding) and energy expenditure (thermogenesis), and its role in the brainstem, where it supports the hypoxic ventilatory response (breathing), increasing the supply of oxygen to the tissues during systemic hypoxia.


2015 ◽  
Vol 309 (7) ◽  
pp. E679-E690 ◽  
Author(s):  
Milena Schönke ◽  
Martin G. Myers ◽  
Juleen R. Zierath ◽  
Marie Björnholm

AMP-activated protein kinase (AMPK) is a major sensor of energy homeostasis and stimulates ATP-generating processes such as lipid oxidation and glycolysis in peripheral tissues. The heterotrimeric enzyme consists of a catalytic α-subunit, a β-subunit that is important for enzyme activity, and a noncatalytic γ-subunit that binds AMP and activates the AMPK complex. We generated a skeletal muscle Cre-inducible transgenic mouse model expressing a mutant γ1-subunit (AMPKγ1H151R), resulting in chronic AMPK activation. The expression of the predominant AMPKγ3 isoform in skeletal muscle was reduced in extensor digitorum longus (EDL) muscle (81–83%) of AMPKγ1H151R transgenic mice, whereas the abundance and phosphorylation of the AMPK target acetyl-CoA carboxylase was increased in tibialis anterior muscle. Glycogen content was increased 10-fold in gastrocnemius muscle. Whole body carbohydrate oxidation was increased by 11%, and whereas glucose tolerance was unaffected, insulin sensitivity was increased in AMPKγ1H151R transgenic mice. Furthermore, perigonadal white adipose tissue mass and serum leptin were reduced in female AMPKγ1H151R transgenic mice by 38 and 51% respectively. Conversely, in male AMPKγ1H151R transgenic mice, food intake was increased (14%), but body weight and body composition were unaltered, presumably because of increased energy expenditure. In conclusion, transgenic activation of skeletal muscle AMPKγ1 in this model plays an important sex-specific role in skeletal muscle metabolism and whole body energy homeostasis.


2011 ◽  
Vol 12 (3) ◽  
pp. 127-140 ◽  
Author(s):  
Pablo Blanco Martínez de Morentin ◽  
Carmen R. González ◽  
Asisk K. Saha ◽  
Luís Martins ◽  
Carlos Diéguez ◽  
...  

2013 ◽  
Vol 51 (2) ◽  
pp. R15-R22 ◽  
Author(s):  
Xianglan Sun ◽  
Ling Gao ◽  
Hung-Yu Chien ◽  
Wan-Chun Li ◽  
Jiajun Zhao

AMP-activated protein kinase (AMPK) is a critical regulator of cellular and whole-body energy homeostasis. Twelve AMPK-related kinases (ARKs; BRSK1, BRSK2, NUAK1, NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4, and MELK) have been identified recently. These kinases show a similar structural organization, including an N-terminal catalytic domain, followed by a ubiquitin-associated domain and a C-terminal spacer sequence, which in some cases also contains a kinase-associated domain 1. Eleven of the ARKs are phosphorylated and activated by the master upstream kinase liver kinase B1. However, most of these ARKs are largely unknown, and the NUAK family seems to have different regulations and functions. This review contains a brief discussion of the NUAK family including the specific characteristics of NUAK1 and NUAK2.


2019 ◽  
Vol 75 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Tomasz Szkudelski ◽  
Katarzyna Szkudelska

Abstract AMP-activated protein kinase (AMPK) is present in different kinds of metabolically active cells. AMPK is an important intracellular energy sensor and plays a relevant role in whole-body energy homeostasis. AMPK is activated, among others, in response to glucose deprivation, caloric restriction and increased physical activity. Upon activation, AMPK affects metabolic pathways leading to increased formation of ATP and simultaneously reducing ATP-consuming processes. AMPK is also expressed in pancreatic β cells and is largely regulated by glucose, which is the main physiological stimulator of insulin secretion. Results of in vitro studies clearly show that glucose-induced insulin release is associated with a concomitant inhibition of AMPK in β cells. However, pharmacological activation of AMPK significantly potentiates the insulin-secretory response of β cells to glucose and to some other stimuli. This effect is primarily due to increased intracellular calcium concentrations. AMPK is also involved in the regulation of gene expression and may protect β cells against glucolipotoxic conditions. It was shown that in pancreatic islets of humans with type 2 diabetes, AMPK is downregulated. Moreover, studies with animal models demonstrated impaired link between glucose and AMPK activity in pancreatic islet cells. These data suggest that AMPK may be a target for compounds improving the functionality of β cells. However, more studies are required to better elucidate the relevance of AMPK in the (patho)physiology of the insulin-secreting cells.


2007 ◽  
Vol 43 ◽  
pp. 121-138 ◽  
Author(s):  
Louis Hue ◽  
Mark H. Rider

The AMPK (AMP-activated protein kinase) is a highly conserved eukaryotic protein serine/threonine kinase. It mediates a nutrient signalling pathway that senses cellular energy status and was appropriately called the fuel gauge of the cell. At the cellular level, AMPK controls energy homoeostasis by switching on catabolic ATP-generating pathways, while switching off anabolic ATP-consuming processes. Its effect on energy balance extends to whole-body energy homoeostasis, because, in the hypothalamus, it integrates nutritional and hormonal signals that control food intake and body weight. The interest in AMPK also stems from the demonstration of its insulin-independent stimulation of glucose transport in skeletal muscle during exercise. Moreover, the potential importance of AMPK in metabolic diseases is supported by the notion that AMPK mediates the anti-diabetic action of biguanides and thiazolidinediones and that it might be involved in the metabolic syndrome. Finally, the more recent demonstration that AMPK activation could occur independently of changes in cellular energy status, suggests that AMPK action extends to the control of non-metabolic functions.


2007 ◽  
Vol 192 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Fang Cai ◽  
Armen V Gyulkhandanyan ◽  
Michael B Wheeler ◽  
Denise D Belsham

The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose responsiveness. We have demonstrated the presence of cellular machinery responsible for glucose sensing in the cell line, including glucokinase, glucose transporters, and appropriate ion channels. ATP-sensitive potassium channels were functional and responded to glucose. The N-43/5 POMC neurons may therefore be an appropriate cell model to study glucose-sensing mechanisms in the hypothalamus. In N-43/5 POMC neurons, increasing glucose concentrations decreased phospho-AMPK activity. As a relevant downstream effect, we found that POMC transcription increased with 2.8 and 16.7 mM glucose. Upon addition of leptin, with either no glucose or with 5 mM glucose, we found that leptin decreased AMPK activity in N-43/5 POMC neurons, but had no significant effect at 25 mM glucose, whereas insulin decreased AMPK activity at only 5 mM glucose. These results demonstrate that individual hypothalamic neuronal cell types, such as the POMC neuron, can have distinct responses to peripheral signals that relay energy status to the brain, and will therefore be activated uniquely to control neuroendocrine function.


Sign in / Sign up

Export Citation Format

Share Document