scholarly journals PBMC transcriptomic responses to primary and secondary vaccination differ due to divergent lean growth and antibody titers in a pig model

2015 ◽  
Vol 47 (10) ◽  
pp. 470-478 ◽  
Author(s):  
Marcel Adler ◽  
Eduard Murani ◽  
Siriluck Ponsuksili ◽  
Klaus Wimmers

The genetic relationship between immune responsiveness and performance is not well understood, but a major topic of the evolution of resource allocation and of relevance in human medicine and livestock breeding, for instance. This study aims to show differences of transcript abundance changes during the time intervals before and after two tetanus toxoid (TT) vaccinations in domestic pigs differing in lean growth (LG) and anti-TT-antibody titers (AB) parameters of performance and immunocompetence. During response to the first vaccination all animals had a general decrease in transcript abundances related to various functional pathways as measured by comparative Affymetrix microarray hybridization and Ingenuity Pathway analyses. Low-AB phenotypes had predominantly decreased immune response transcripts. Combined phenotypes high-AB/high-LG had decreased transcripts related to growth factor signaling pathways. However, during the interval after the booster vaccination, high-LG and high-AB animals responded exclusively with increased immune transcripts, such as B-cell receptor signaling and cellular immune response pathways. In addition, high-LG and low-AB animals had predominantly increased transcripts of several cellular immune response pathways. Conversely, low-LG and high-AB animals had few elevated immune transcripts and decreased transcripts related to only two nonimmune-specific pathways. In response to booster vaccination high-LG phenotypes revealed enriched transcripts related to several different immune response pathways, regardless of AB phenotype. Different from the expected impact of AB titers, divergent AB phenotypes did not reflect considerable differences between immune transcripts. However, highly significant differences observed among divergent LG phenotypes suggest the compatibility of high performance and high vaccine responses.

2021 ◽  
Author(s):  
Michael Bonelli ◽  
Daniel Mrak ◽  
Selma Tobudic ◽  
Daniela Sieghart ◽  
Maximilian Koblischke ◽  
...  

ABSTRACTSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced coronavirus disease 2019 (COVID-19) has led to exponentially rising mortality, particularly in immunosuppressed patients, who inadequately respond to conventional COVID-19 vaccination. In this blinded randomized clinical trial (EudraCT 2021-002348-57) we compare the efficacy and safety of an additional booster vaccination with a vector versus mRNA vaccine in non-seroconverted patients. We assigned 60 patients under rituximab treatment, who did not seroconvert after their primary mRNA vaccination with either BNT162b2 (Pfizer–BioNTech) or mRNA-1273 (Moderna), to receive a third dose, either using the same mRNA or the vector vaccine ChAdOx1 nCoV-19 (Oxford-AstraZeneca). Patients were stratified according to the presence of peripheral B-cells. The primary efficacy endpoint was the difference in the SARS-CoV-2 antibody seroconversion rate between vector (heterologous) and mRNA (homologous) vaccinated patients by week four. Key secondary endpoints included the overall seroconversion and cellular immune response; safety was assessed at weeks one and four.Seroconversion rates at week four were comparable between vector (6/27 patients, 22%) and mRNA (9/28, 32%) vaccine (p=0.6). Overall, 27% of patients seroconverted; specific T-cell responses were observed in 20/20 (100%) vector versus 13/16 (81%) mRNA vaccinated patients. Newly induced humoral and/or cellular responses occurred in 9/11 (82%) patients. No serious adverse events, related to immunization, were observed. This enhanced humoral and/or cellular immune response supports an additional booster vaccination in non-seroconverted patients irrespective of a heterologous or homologous vaccination regimen.


2011 ◽  
Vol 152 (3-4) ◽  
pp. 328-337 ◽  
Author(s):  
Alaín González Pose ◽  
Julia Noda Gómez ◽  
Alina Venereo Sánchez ◽  
Armando Vega Redondo ◽  
Elsa Rodríguez Rodríguez ◽  
...  

2021 ◽  
pp. ASN.2021070908
Author(s):  
Jens Van Praet ◽  
Marijke Reynders ◽  
Dirk De Bacquer ◽  
Liesbeth Viaene ◽  
Melanie Schoutteten ◽  
...  

Background Preliminary evidence suggests that hemodialysis patients have a blunted early serological response to SARS-CoV-2 vaccination. Optimizing vaccination strategy in this population requires a thorough understanding of predictors and dynamics of humoral and cellular immune responses to different SARS-CoV2 vaccines. Methods This prospective multicenter study of 543 hemodialysis patients and 75 healthy volunteers evaluated the immune responses at 4 or 5 weeks and 8 or 9 weeks after administration of the BNT162b2 or mRNA-1273 vaccine, respectively. We assessed anti-SARS-CoV-2 spike antibodies and T cell responses by IFN-γ of peripheral blood lymphocytes upon SARS-CoV-2 glycoprotein stimulation (QuantiFERON assay) and evaluated potential predictors of the responses. Results Compared with healthy volunteers, hemodialysis patients had an incomplete, delayed humoral immune response and a blunted cellular immune response. Geometric mean antibody titers at both time points were significantly greater in patients vaccinated with mRNA-1273 versus BNT162b2, and a larger proportion of them achieved the threshold of 4160 AU/ml, corresponding with high neutralizing antibody titers in vitro (53.6% versus 31.8% at 8 or 9 weeks, P<0.0001). Patients vaccinated with mRNA-1273 versus BNT162b2 exhibited significantly greater median QuantiFERON responses at both time points, and a larger proportion achieved the threshold of 0.15 IU/ml (64.4% versus 46.9% at 8 or 9 weeks, P<0.0001). Multivariate analysis identified COVID-19 experience, vaccine type, use of immunosuppressive drugs, serum albumin, lymphocyte count, hepatitis B vaccine nonresponder status, and dialysis vintage as independent predictors of the humoral and cellular responses. Conclusions The mRNA-1273 vaccine's greater immunogenicity may be related to its higher mRNA dose. This suggests that a high-dose vaccine might improve the impaired immune response to SARS-CoV-2 vaccination in hemodialysis patients.


2022 ◽  
pp. annrheumdis-2021-221558
Author(s):  
Michael Bonelli ◽  
Daniel Mrak ◽  
Selma Tobudic ◽  
Daniela Sieghart ◽  
Maximilian Koblischke ◽  
...  

ObjectivesSARS‐CoV‐2-induced COVID-19 has led to exponentially rising mortality, particularly in immunosuppressed patients, who inadequately respond to conventional COVID-19 vaccination.MethodsIn this blinded randomised clinical trial, we compare the efficacy and safety of an additional booster vaccination with a vector versus mRNA vaccine in non-seroconverted patients. We assigned 60 patients under rituximab treatment, who did not seroconvert after their primary mRNA vaccination with either BNT162b2 (Pfizer–BioNTech) or mRNA-1273 (Moderna), to receive a third dose, either using the same mRNA or the vector vaccine ChAdOx1 nCoV-19 (Oxford–AstraZeneca). Patients were stratified according to the presence of peripheral B cells. The primary efficacy endpoint was the difference in the SARS-CoV-2 antibody seroconversion rate between vector (heterologous) and mRNA (homologous) vaccinated patients by week 4. Key secondary endpoints included the overall seroconversion and cellular immune response; safety was assessed at week 1 and week 4.ResultsSeroconversion rates at week 4 were comparable between vector (6/27 patients, 22%) and mRNA (9/28, 32%) vaccines (p=0.6). Overall, 27% of patients seroconverted; specific T cell responses were observed in 20/20 (100%) vector versus 13/16 (81%) mRNA vaccinated patients. Newly induced humoral and/or cellular responses occurred in 9/11 (82%) patients. 3/37 (8%) of patients without and 12/18 (67%) of the patients with detectable peripheral B cells seroconverted. No serious adverse events, related to immunisation, were observed.ConclusionsThis enhanced humoral and/or cellular immune response supports an additional booster vaccination in non-seroconverted patients irrespective of a heterologous or homologous vaccination regimen.


1999 ◽  
Vol 37 (2) ◽  
pp. 123-129 ◽  
Author(s):  
B. R. Mignon ◽  
T. Leclipteux ◽  
CH. Focant ◽  
A. J. Nikkels ◽  
G. E. PIErard ◽  
...  

2004 ◽  
Vol 146 (4) ◽  
pp. 159-172 ◽  
Author(s):  
D. Müller-Doblies ◽  
S. Baumann ◽  
P. Grob ◽  
A. Hülsmeier ◽  
U. Müller-Doblies ◽  
...  

2005 ◽  
Vol 102 (Special_Supplement) ◽  
pp. 180-184 ◽  
Author(s):  
György T. Szeifert ◽  
Isabelle Salmon ◽  
Sandrine Rorive ◽  
Nicolas Massager ◽  
Daniel Devriendt ◽  
...  

Object. The aim of this study was to analyze the cellular immune response and histopathological changes in secondary brain tumors after gamma knife surgery (GKS). Methods. Two hundred ten patients with cerebral metastases underwent GKS. Seven patients underwent subsequent craniotomy for tumor removal between 1 and 33 months after GKS. Four of these patients had one tumor, two patients had two tumors, and one patient had three. Histological and immunohistochemical investigations were performed. In addition to routine H & E and Mallory trichrome staining, immunohistochemical reactions were conducted to characterize the phenotypic nature of the cell population contributing to the tissue immune response to neoplastic deposits after radiosurgery. Light microscopy revealed an intensive lymphocytic infiltration in the parenchyma and stroma of tumor samples obtained in patients in whom surgery was performed over 6 months after GKS. Contrary to this, extensive areas of tissue necrosis with either an absent or scanty lymphoid population were observed in the poorly controlled neoplastic specimens obtained in cases in which surgery was undertaken in patients less than 6 months after GKS. Immunohistochemical characterization demonstrated the predominance of CD3-positive T cells in the lymphoid infiltration. Conclusions. Histopathological findings of the present study are consistent with a cellular immune response of natural killer cells against metastatic brain tumors, presumably stimulated by the ionizing energy of focused radiation.


Sign in / Sign up

Export Citation Format

Share Document