scholarly journals Additional heterologous versus homologous booster vaccination in immunosuppressed patients without SARS-CoV-2 antibody seroconversion after primary mRNA vaccination: a randomised controlled trial

2022 ◽  
pp. annrheumdis-2021-221558
Author(s):  
Michael Bonelli ◽  
Daniel Mrak ◽  
Selma Tobudic ◽  
Daniela Sieghart ◽  
Maximilian Koblischke ◽  
...  

ObjectivesSARS‐CoV‐2-induced COVID-19 has led to exponentially rising mortality, particularly in immunosuppressed patients, who inadequately respond to conventional COVID-19 vaccination.MethodsIn this blinded randomised clinical trial, we compare the efficacy and safety of an additional booster vaccination with a vector versus mRNA vaccine in non-seroconverted patients. We assigned 60 patients under rituximab treatment, who did not seroconvert after their primary mRNA vaccination with either BNT162b2 (Pfizer–BioNTech) or mRNA-1273 (Moderna), to receive a third dose, either using the same mRNA or the vector vaccine ChAdOx1 nCoV-19 (Oxford–AstraZeneca). Patients were stratified according to the presence of peripheral B cells. The primary efficacy endpoint was the difference in the SARS-CoV-2 antibody seroconversion rate between vector (heterologous) and mRNA (homologous) vaccinated patients by week 4. Key secondary endpoints included the overall seroconversion and cellular immune response; safety was assessed at week 1 and week 4.ResultsSeroconversion rates at week 4 were comparable between vector (6/27 patients, 22%) and mRNA (9/28, 32%) vaccines (p=0.6). Overall, 27% of patients seroconverted; specific T cell responses were observed in 20/20 (100%) vector versus 13/16 (81%) mRNA vaccinated patients. Newly induced humoral and/or cellular responses occurred in 9/11 (82%) patients. 3/37 (8%) of patients without and 12/18 (67%) of the patients with detectable peripheral B cells seroconverted. No serious adverse events, related to immunisation, were observed.ConclusionsThis enhanced humoral and/or cellular immune response supports an additional booster vaccination in non-seroconverted patients irrespective of a heterologous or homologous vaccination regimen.

2021 ◽  
Author(s):  
Michael Bonelli ◽  
Daniel Mrak ◽  
Selma Tobudic ◽  
Daniela Sieghart ◽  
Maximilian Koblischke ◽  
...  

ABSTRACTSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced coronavirus disease 2019 (COVID-19) has led to exponentially rising mortality, particularly in immunosuppressed patients, who inadequately respond to conventional COVID-19 vaccination. In this blinded randomized clinical trial (EudraCT 2021-002348-57) we compare the efficacy and safety of an additional booster vaccination with a vector versus mRNA vaccine in non-seroconverted patients. We assigned 60 patients under rituximab treatment, who did not seroconvert after their primary mRNA vaccination with either BNT162b2 (Pfizer–BioNTech) or mRNA-1273 (Moderna), to receive a third dose, either using the same mRNA or the vector vaccine ChAdOx1 nCoV-19 (Oxford-AstraZeneca). Patients were stratified according to the presence of peripheral B-cells. The primary efficacy endpoint was the difference in the SARS-CoV-2 antibody seroconversion rate between vector (heterologous) and mRNA (homologous) vaccinated patients by week four. Key secondary endpoints included the overall seroconversion and cellular immune response; safety was assessed at weeks one and four.Seroconversion rates at week four were comparable between vector (6/27 patients, 22%) and mRNA (9/28, 32%) vaccine (p=0.6). Overall, 27% of patients seroconverted; specific T-cell responses were observed in 20/20 (100%) vector versus 13/16 (81%) mRNA vaccinated patients. Newly induced humoral and/or cellular responses occurred in 9/11 (82%) patients. No serious adverse events, related to immunization, were observed. This enhanced humoral and/or cellular immune response supports an additional booster vaccination in non-seroconverted patients irrespective of a heterologous or homologous vaccination regimen.


2015 ◽  
Vol 47 (10) ◽  
pp. 470-478 ◽  
Author(s):  
Marcel Adler ◽  
Eduard Murani ◽  
Siriluck Ponsuksili ◽  
Klaus Wimmers

The genetic relationship between immune responsiveness and performance is not well understood, but a major topic of the evolution of resource allocation and of relevance in human medicine and livestock breeding, for instance. This study aims to show differences of transcript abundance changes during the time intervals before and after two tetanus toxoid (TT) vaccinations in domestic pigs differing in lean growth (LG) and anti-TT-antibody titers (AB) parameters of performance and immunocompetence. During response to the first vaccination all animals had a general decrease in transcript abundances related to various functional pathways as measured by comparative Affymetrix microarray hybridization and Ingenuity Pathway analyses. Low-AB phenotypes had predominantly decreased immune response transcripts. Combined phenotypes high-AB/high-LG had decreased transcripts related to growth factor signaling pathways. However, during the interval after the booster vaccination, high-LG and high-AB animals responded exclusively with increased immune transcripts, such as B-cell receptor signaling and cellular immune response pathways. In addition, high-LG and low-AB animals had predominantly increased transcripts of several cellular immune response pathways. Conversely, low-LG and high-AB animals had few elevated immune transcripts and decreased transcripts related to only two nonimmune-specific pathways. In response to booster vaccination high-LG phenotypes revealed enriched transcripts related to several different immune response pathways, regardless of AB phenotype. Different from the expected impact of AB titers, divergent AB phenotypes did not reflect considerable differences between immune transcripts. However, highly significant differences observed among divergent LG phenotypes suggest the compatibility of high performance and high vaccine responses.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 5040-5040
Author(s):  
Adrián Sánchez-Tornero ◽  
Lorena Vigon ◽  
Guiomar Casado-Fernandez ◽  
Javier Garcia-Pérez ◽  
Elena Mateos ◽  
...  

Abstract Background : Oncohematological patients may have a lower immune response against SARS-CoV-2, both to natural infection and to vaccines. Most studies have focused on the analysis of the humoral response, which means that the information available on the cellular response against SARS-CoV-2 in these patients is limited. Current recommendations include vaccination against SARS-CoV-2 in patients undergoing autologous hematopoietic stem cell transplantation (AHSTC), regardless of whether they have been previously exposed to the virus. These recommendations are based on previous studies with other vaccines. Therefore, it is necessary to analyze the immune response that is developed in these patients in order to make specific recommendations for COVID-19 vaccination. Objective : To study the humoral and cellular immune response before and after AHSTC in patients with oncohematological neoplasms who were exposed to SARS-CoV-2 before the transplantation. Materials & methods : Nine patients with previous exposure to SARS-CoV-2 who underwent AHSTC (Table 1) and 8 healthy donors who recovered from mild COVID-19 were recruited from Hospital Ramón y Cajal and Primary Healthcare Center Pedro Laín Entralgo (Madrid, Spain), respectively. Specific direct cellular cytotoxicity (DCC) of PBMCs from these patients against Vero E6 cells infected with pseudotyped SARS-CoV-2 was determined. The activation of caspase-3 in Vero cells was measured after 1 hour of co-culture with PBMCs, in which cytotoxic cell populations were analyzed by flow cytometry. Antibody-dependent cellular cytotoxicity (ADCC) was analyzed by quantifying the binding of Annexin V to rituximab-coated Raji cells as targets of PBMCs. Results : 1) 66% of AHSTC patients did not develop detectable levels of IgGs against SARS-CoV-2 (Fig. 1). In 33% of these patients with detectable IgG, the titers decreased after AHSTC, as well as their neutralizing capacity (Fig. 1B and C). 2) AHSTC patients showed increased levels of immature B cells (9.5-fold; p=0.0586) and plasmablasts (28.8-fold), in comparison with healthy donors who had mild COVID-19, while naive and resting memory B cells decreased 1.7- and 6.9-fold, respectively. 3) Specific DCC against SARS-CoV-2-infected cells increased 1.5-fold in comparison with healthy donors (Fig. 2A). Cytotoxic populations with NK phenotypes (CD3-CD56+CD16+), NKT (CD3+CD56+CD16+), and CD8+ T cells (CD3+CD8+TCRγδ+) increased 1.9- (p=0.0311), 1.9- (p=0.0592), and 1.6-fold, respectively (Fig. 2B). ADCC increased 2.1-fold in PBMCs from AHSTC patients in comparison with healthy donors (p = 0.0592). Conclusions : Our data show for the first time how the humoral and cellular immune response against the natural infection by SARS-Cov-2 may be modified in patients who were subsequently subjected to AHSTC. Although the humoral response may be reduced after AHSTC, the specific cellular response showed an increased cytotoxic activity. These results could be extrapolated to patients who were vaccinated against COVID-19 prior to AHSTC. Therefore, this information could be useful to define the recommendations for COVID-19 vaccination after AHSTC. Figure 1 Figure 1. Disclosures Garcia-Gutiérrez: Pfizer: Research Funding; Incyte: Consultancy; Novartis: Consultancy; Bristol-Myers Squibb: Consultancy.


1999 ◽  
Vol 37 (2) ◽  
pp. 123-129 ◽  
Author(s):  
B. R. Mignon ◽  
T. Leclipteux ◽  
CH. Focant ◽  
A. J. Nikkels ◽  
G. E. PIErard ◽  
...  

2004 ◽  
Vol 146 (4) ◽  
pp. 159-172 ◽  
Author(s):  
D. Müller-Doblies ◽  
S. Baumann ◽  
P. Grob ◽  
A. Hülsmeier ◽  
U. Müller-Doblies ◽  
...  

2005 ◽  
Vol 102 (Special_Supplement) ◽  
pp. 180-184 ◽  
Author(s):  
György T. Szeifert ◽  
Isabelle Salmon ◽  
Sandrine Rorive ◽  
Nicolas Massager ◽  
Daniel Devriendt ◽  
...  

Object. The aim of this study was to analyze the cellular immune response and histopathological changes in secondary brain tumors after gamma knife surgery (GKS). Methods. Two hundred ten patients with cerebral metastases underwent GKS. Seven patients underwent subsequent craniotomy for tumor removal between 1 and 33 months after GKS. Four of these patients had one tumor, two patients had two tumors, and one patient had three. Histological and immunohistochemical investigations were performed. In addition to routine H & E and Mallory trichrome staining, immunohistochemical reactions were conducted to characterize the phenotypic nature of the cell population contributing to the tissue immune response to neoplastic deposits after radiosurgery. Light microscopy revealed an intensive lymphocytic infiltration in the parenchyma and stroma of tumor samples obtained in patients in whom surgery was performed over 6 months after GKS. Contrary to this, extensive areas of tissue necrosis with either an absent or scanty lymphoid population were observed in the poorly controlled neoplastic specimens obtained in cases in which surgery was undertaken in patients less than 6 months after GKS. Immunohistochemical characterization demonstrated the predominance of CD3-positive T cells in the lymphoid infiltration. Conclusions. Histopathological findings of the present study are consistent with a cellular immune response of natural killer cells against metastatic brain tumors, presumably stimulated by the ionizing energy of focused radiation.


Sign in / Sign up

Export Citation Format

Share Document