scholarly journals Analysis of gene expression in pancreatic islets from diet-induced obese mice

2008 ◽  
Vol 36 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Yumi Imai ◽  
Hiral R. Patel ◽  
Nicolai M. Doliba ◽  
Franz M. Matschinsky ◽  
John W. Tobias ◽  
...  

In insulin-resistant status such as obesity, failure of pancreatic islets to increase insulin secretion leads to diabetes. We sought to screen for the islet genes that facilitate islet adaptation to obesity by comparing gene expression profiles between two strains of obesity-prone inbred mice with different propensities for hyperglycemia. C57BL/6J and AKR/J were fed regular rodent chow or high-fat diet, after which islet morphology, secretory function, and gene expression were assessed. AKR/J had lower blood glucose and higher insulin levels compared with C57BL/6J mice on regular rodent chow or high-fat diet. Insulin secretion was 3.2-fold higher in AKR/J than C57BL/6J mice following intraperitoneal glucose injection. Likewise, glucose-stimulated insulin secretion from isolated islets was higher in AKR/J. Additionally, islet mass was 1.4-fold greater in AKR/J compared with C57BL/6J. To elucidate the factors associated with the differences in islet function, we analyzed the gene expression profiles in islets in AKR/J and C57BL/6J mice. Of 14,000 genes examined, 202 were upregulated and 270 were downregulated in islets from diet-induced obese AKR/J mice compared with C57BL/6J mice. Key genes involved in islet signaling and metabolism, e.g., glucagon-like peptide-1 receptor, sterol Co-A desaturase 1 and 2, and fatty acid desaturase 2 were upregulated in obese AKR/J mice. The expression of multiple extracellular matrix proteins was also increased in AKR/J mice, suggesting a role in modulation of islet mass. Functional analyses of differentially regulated genes hold promise for elucidating factors linking obesity to alterations in islet function.

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Yun Jung Bae ◽  
Youn-Kyung Bak ◽  
Taesun Park ◽  
Myung-Sook Choi ◽  
Jeongseon Kim ◽  
...  

Gene ◽  
2004 ◽  
Vol 340 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Sujong Kim ◽  
Insuk Sohn ◽  
Joon-Ik Ahn ◽  
Ki-Hwan Lee ◽  
Yeon Sook Lee ◽  
...  

Gene ◽  
2015 ◽  
Vol 565 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Hyeng-Soo Kim ◽  
Zae Young Ryoo ◽  
Sang Un Choi ◽  
Sanggyu Lee

2010 ◽  
Vol 37 (8) ◽  
pp. 3691-3695 ◽  
Author(s):  
Jie Qiu ◽  
Rui Cheng ◽  
Xiao-yu Zhou ◽  
Jin-gai Zhu ◽  
Chun Zhu ◽  
...  

2020 ◽  
Vol 7 (5) ◽  
pp. 881-896 ◽  
Author(s):  
Dongxu He ◽  
Aiqin Mao ◽  
Chang-Bo Zheng ◽  
Hao Kan ◽  
Ka Zhang ◽  
...  

Abstract The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.


2015 ◽  
Vol 2 ◽  
pp. 179-183
Author(s):  
Kazuya Ikeda ◽  
Shuhei Tomimoto ◽  
Soken Tsuchiya ◽  
Ken-ichi Hamagami ◽  
Norihito Shintani ◽  
...  

Surgery ◽  
2003 ◽  
Vol 134 (6) ◽  
pp. 982-987 ◽  
Author(s):  
Mark L Kayton ◽  
Nick G Costouros ◽  
Dominique Lorang ◽  
H.Richard Alexander ◽  
Stephen M Hewitt ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Tao Yang ◽  
Qi Fu ◽  
Hemin Jiang

Abstract CHL1 Increases Insulin Secretion & Negatively Regulates The Poliferation Of Pancreatic β Cell Objective: CHL1 belongs to neural recognition molecules of the immunoglobulin superfamily, is mainly expressed in the nervous system. CHL1 is involved in neuronal migration, axonal growth, and dendritic projection. RNA sequencing of single human islet cells confirmed that CHL1 had an expression difference in β cells of type 2 diabetes and healthy controls. However, whether CHL1 gene regulates islet function remained to be explored. Methods: PCR and Western Blot were applied to investigate the tissue distribution of CHL1 in wild-type C57BL/6J mice. The islet expression of CHL1 gene was observed in pancreatic islets of NOD mice and high-fat-diet C57BL/6J mice of different ages. MIN6 cells with siRNA to silence CHL1 or with lentivirus to overexpress CHL1 were constructed. Effects of the gene on proliferation, apoptosis, cell cycle and insulin secretion were determined by using CCK8, EdU, TUNEL, AV/PI, GSIS, electron microscopy and flow cytometry. Results: CHL1 was localized on the cell membrane and expressed in the nervous system, islet of pancreas and gastrointestinal tract. CHL1 was hypoexpressed in the pancreatic islets of obese mice, hyperexpressed in the pancreatic islets of NOD mice and in vitro after treated with cytokines. After silencing CHL1 in MIN6 cells, insulin secretion decreased in 20 mM glucose with down-regulation of INS1, SLC2A2 gene, and transmission electron microscope showed the number of insulin secretary granules <50nm from the cell membrane was significantly reduced. Silencing of CHL1 in MIN6 cells induced cell proliferation, reduced apoptosis rate, prolonged the S phase of cell cycle and shortened the G1 phase with downregulated expression of p21, p53 and up-regulated expression of cyclin D1, opposite results were found in CHL1 over-expressing MIN6 cells. Proliferation induced by silencing of CHL1 was inhibited by ERK inhibitor (PD98059), which indicates that ERK pathway is essential for signaling by these molecules in pancreatic β cell. Conclusion: The expression of CHL1 gene was significantly decreased in the pancreatic islets of obese mice induced by high-fat diet. The low expression of CHL1 gene promotes the proliferation of MIN6 cells through the ERK pathway and affect cell cycle through the p53 pathway. This may be one of the mechanisms that pancreatic β cells compensatory hyperplasia in the stage of obesity-induced pre-diabetes.


2020 ◽  
Author(s):  
Livia Lopez-Noriega ◽  
Rebecca Callingham ◽  
Aida Martinez-Sánchez ◽  
Grazia Pizza ◽  
Nejc Haberman ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) are emerging as crucial regulators of β-cell development and function. Consequently, the mis-expression of members of this group may contribute to the risk of type 2 diabetes (T2D). Here, we investigate roles for an antisense lncRNA expressed from the Pax6 locus (annotated as Pax6os1 in mice and PAX6-AS1 in humans) in β-cell function. The transcription factor Pax6 is required for the development of pancreatic islets and maintenance of a fully differentiated β-cell phenotype. Pax6os1/PAX6-AS1 expression was increased in pancreatic islets and β-cell lines at high glucose concentrations, in islets from mice fed a high fat diet, and in those from patients with type 2 diabetes. Silencing or deletion of Pax6os1/PAX6-AS1 in MIN6 cells and EndoC-βH1cells, respectively, upregulated β-cell signature genes, including insulin. Moreover, shRNA-mediated silencing of PAX6-AS1 in human islets not only increased insulin mRNA, but also enhanced glucose-stimulated insulin secretion and calcium dynamics. In contrast, inactivation of Pax6os1 in mice was largely without effect on glucose homeostasis, though female Pax6os1 null mice on high fat diet (HFD) showed a tendency towards enhanced glucose clearance. Together, our results suggest that increased expression of PAX6-AS1 at high glucose levels may contribute to β-cell dedifferentiation and failure in some forms of type 2 diabetes. Thus, targeting PAX6-AS1 may provide a promising strategy to enhance insulin secretion and improve glucose homeostasis in type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document