scholarly journals Elevated cerebrospinal fluid sodium in hypertensive human subjects with a family history of Alzheimer’s disease

2020 ◽  
Vol 52 (3) ◽  
pp. 133-142
Author(s):  
Lucas A. C. Souza ◽  
Fatima Trebak ◽  
Veena Kumar ◽  
Ryousuke Satou ◽  
Patrick G. Kehoe ◽  
...  

High salt (sodium) intake leads to the development of hypertension despite the fact that plasma sodium concentration ([Na+]) is usually normal in hypertensive human patients. Increased cerebrospinal fluid (CSF) sodium contributes to elevated sympathetic activity and high blood pressure (BP) in rodent models of hypertension. However, whether there is an increased accumulation of sodium in the CSF of humans with chronic hypertension is not well defined. Here, we investigated CSF [Na+] from hypertensive and normotensive human subjects with family histories of Alzheimer’s disease in samples collected in a clinical trial, as spinal tap is not a routine clinical procedure for hypertensive patients. The [Na+] and osmolality in plasma and CSF were measured by flame photometry. Daytime ambulatory BP was monitored while individuals were awake. Participants were deidentified and data were analyzed in conjunction with a retrospective analysis of patient history and diagnosis. We found that CSF [Na+] was significantly higher in participants with high BP compared with normotensive participants; there was no difference in plasma [Na+], or plasma and CSF osmolality between groups. Subsequent multiple linear regression analyses controlling for age, sex, race, and body mass index revealed a significant positive correlation between CSF [Na+] and BP but showed no correlation between plasma [Na+] and BP. In sum, CSF [Na+] was higher in chronic hypertensive individuals and may play a key role in the pathogenesis of human hypertension. Collectively, our findings provide evidence for the clinical significance of CSF [Na+] in chronic hypertension in humans.

1991 ◽  
Vol 71 (6) ◽  
pp. 2380-2386 ◽  
Author(s):  
K. A. Houpt ◽  
N. Northrup ◽  
T. Wheatley ◽  
T. R. Houpt

When a preliminary experiment in sodium-replete ponies revealed an increase, but not a significant increase, in salt consumption after furosemide treatment, the experiment was repeated using sodium-deficient horses in which aldosterone levels might be expected to be elevated to test the hypothesis that a background of aldosterone is necessary for salt appetite. Ten Standardbred mares were injected intravenously with furosemide or an equivalent volume of 0.9% sodium chloride as a control to test the effect of furosemide on their salt appetite and blood constituents. Sodium intake and sodium loss in urine, as well as water intake and urine output, were measured and compared to determine accuracy of compensation for natriuresis and diuresis. Plasma protein and packed cell volume showed significant increases in response to furosemide treatment (F = 29.31, P less than 0.001 and F = 11.20, P less than 0.001, respectively). There were no significant changes in plasma sodium concentration or osmolality in response to the treatment (P greater than 0.05). The furosemide-treated horses consumed 126 +/- 14.8 g salt, significantly more than when they were given the control injection (94.5 +/- 9.8 g; t = 2.22, P = 0.05). In response to furosemide, horses lost 962 +/- 79.7 and consumed 2,170 +/- 5 meq sodium; however, compared with control, they lost 955 meq more sodium and ingested only 570 meq more sodium, so they were undercompensating for natriuresis. The furosemide-treated horses drank 9.6 +/- 0.8 kg of water, significantly more than when they received the control injection (6.4 +/- 0.8 kg; t = 6.9, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 10 ◽  
pp. P664-P664
Author(s):  
N.M. Dowling ◽  
Sterling Johnson ◽  
Henrik Zetterberg ◽  
Barbara B. Bendlin ◽  
Carey Elizabeth Gleason ◽  
...  

1982 ◽  
Vol 62 (5) ◽  
pp. 471-477 ◽  
Author(s):  
E. G. Schneider ◽  
Sarah D. Gleason ◽  
A. Zucker

1. The effect of dietary sodium intake on pre-and post-prandial plasma sodium concentrations and on the pattern of sodium and potassium excretion was determined in conscious female dogs, who were allowed free access to water and were fed on commercial low sodium diets supplemented with 0, 50, 100 or 250 mmol of sodium chloride/day for 6 days. 2. The preprandial plasma sodium concentration was not altered by the dietary sodium intake. However, the 4 h postprandial plasma sodium concentration was linearly related to the magnitude of dietary sodium intake, whereas the 8 h postprandial plasma sodium concentration was elevated only in dogs receiving 250 mmol of sodium/day. 3. The (0–8 h/0–24 h) ratio for urinary sodium excretion was significantly correlated with both the dietary sodium intake and the postprandial increase in plasma sodium concentration. 4. The 24 h excretion of potassium was not markedly affected by the dietary sodium intake; however, the (0–8 h/0–24 h) ratio for potassium excretion was significantly correlated with both the dietary sodium intake and the (0–8 h/0–24 h) ratio for sodium excretion. 5. These data indicate that: (a) postprandial increases in plasma sodium concentration need to be considered when evaluating the mechanisms involved in the daily regulation of sodium balance; (b) the daily pattern of potassium excretion is closely linked to the dietary sodium intake.


2014 ◽  
pp. 83-89
Author(s):  
Dung Ngo ◽  
Thi Nhan Nguyen ◽  
Khanh Hoang

Objective: Study on 106 patients with closed head injury, assessment of serum ADH concentration, correlation with Glasgow score, sodium and plasma osmotic pressure. Patients and methods: Patients with closed head injuries were diagnosed determined by computerized tomography, admitted to the Hue Central Hospital 72 hours ago. Results: (i) Serum concentration of ADH 42.21 ± 47.80 pg/ml. (ii) There is a negative correlation between serum levels of ADH with: (1) Glasgow point r = -0.323, p <0.01; (2) Plasma sodium concentration r = - 0.211, p > 0.05; (3) Plasma osmotic pressure r = - 0.218, p> 0.05. Conclusion: There is a negative correlation between serum levels of ADH with Glasgow scale, plasma sodium concentration and osmotic pressure in plasma. Key words: ADH traumatic brain injury.


Sign in / Sign up

Export Citation Format

Share Document