scholarly journals The Fox Genes in the Liver: From Organogenesis to Functional Integration

2010 ◽  
Vol 90 (1) ◽  
pp. 1-22 ◽  
Author(s):  
John Le lay ◽  
Klaus H. Kaestner

Formation and function of the liver are highly controlled, essential processes. Multiple signaling pathways and transcriptional regulatory networks cooperate in this complex system. The evolutionarily conserved FOX, for Forkhead bOX, class of transcriptional regulators is critical to many aspects of liver development and function. The FOX proteins are small, mostly monomeric DNA binding factors containing the so-called winged helix DNA binding motif that distinguishes them from other classes of transcription factors. We discuss the biochemical and genetic roles of Foxa, Foxl1, Foxm1, and Foxo, as these have been shown to regulate many processes throughout the life of the organ, controlling both formation and function of the liver.

Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 40 ◽  
Author(s):  
Antonia Denis ◽  
Mario Alberto Martínez-Núñez ◽  
Silvia Tenorio-Salgado ◽  
Ernesto Perez-Rueda

In recent years, there has been a large increase in the amount of experimental evidence for diverse archaeal organisms, and these findings allow for a comprehensive analysis of archaeal genetic organization. However, studies about regulatory mechanisms in this cellular domain are still limited. In this context, we identified a repertoire of 86 DNA-binding transcription factors (TFs) in the archaeon Pyrococcus furiosus DSM 3638, that are clustered into 32 evolutionary families. In structural terms, 45% of these proteins are composed of one structural domain, 41% have two domains, and 14% have three structural domains. The most abundant DNA-binding domain corresponds to the winged helix-turn-helix domain; with few alternative DNA-binding domains. We also identified seven regulons, which represent 13.5% (279 genes) of the total genes in this archaeon. These analyses increase our knowledge about gene regulation in P. furiosus DSM 3638 and provide additional clues for comprehensive modeling of transcriptional regulatory networks in the Archaea cellular domain.


2021 ◽  
Author(s):  
Ye Gao ◽  
Hyun Gyu Lim ◽  
Hans Verkler ◽  
Richard Szubin ◽  
Daniel Quach ◽  
...  

Bacteria regulate gene expression to adapt to changing environments through transcriptional regulatory networks (TRNs). Although extensively studied, no TRN is fully characterized since the identity and activity of all the transcriptional regulators that comprise a TRN are not known. Here, we experimentally evaluate 40 uncharacterized proteins in Escherichia coli K-12 MG1655, which were computationally predicted to be transcription factors (TFs). First, we used a multiplexed ChIP-exo assay to characterize genome-wide binding sites for these candidate TFs; 34 of them were found to be DNA-binding protein. We then compared the relative location between binding sites and RNA polymerase (RNAP). We found 48% (283/588) overlap between the TFs and RNAP. Finally, we used these data to infer potential functions for 10 of the 34 TFs with validated DNA binding sites and consensus binding motifs. These TFs were found to have various roles in regulating primary cellular processes in E. coli. Taken together, this study: (1) significantly expands the number of confirmed TFs, close to the estimated total of about 280 TFs; (2) predicts the putative functions of the newly discovered TFs, and (3) confirms the functions of representative TFs through mutant phenotypes.


Author(s):  
Nawrah Khader ◽  
Virlana M Shchuka ◽  
Oksana Shynlova ◽  
Jennifer A Mitchell

Abstract The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for fetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1 (AP-1), progesterone receptors (PRs), estrogen receptors (ERs), and nuclear factor kappa B (NF-κB), as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour- associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.


2021 ◽  
Vol 22 (6) ◽  
pp. 2837
Author(s):  
Venura Herath ◽  
Jeanmarie Verchot

Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Chen ◽  
Shirley Luo ◽  
Abigail Dupre ◽  
Roshan P. Vasoya ◽  
Aditya Parthasarathy ◽  
...  

AbstractThe brush border is comprised of microvilli surface protrusions on the apical surface of epithelia. This specialized structure greatly increases absorptive surface area and plays crucial roles in human health. However, transcriptional regulatory networks controlling brush border genes are not fully understood. Here, we identify that hepatocyte nuclear factor 4 (HNF4) transcription factor is a conserved and important regulator of brush border gene program in multiple organs, such as intestine, kidney and yolk sac. Compromised brush border gene signatures and impaired transport were observed in these tissues upon HNF4 loss. By ChIP-seq, we find HNF4 binds and activates brush border genes in the intestine and kidney. H3K4me3 HiChIP-seq identifies that HNF4 loss results in impaired chromatin looping between enhancers and promoters at gene loci of brush border genes, and instead enhanced chromatin looping at gene loci of stress fiber genes in the intestine. This study provides comprehensive transcriptional regulatory mechanisms and a functional demonstration of a critical role for HNF4 in brush border gene regulation across multiple murine epithelial tissues.


2009 ◽  
Vol 25 (22) ◽  
pp. 3001-3004 ◽  
Author(s):  
F. Tian ◽  
P. K. Shah ◽  
X. Liu ◽  
N. Negre ◽  
J. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document