Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications

2017 ◽  
Vol 97 (3) ◽  
pp. 1045-1087 ◽  
Author(s):  
Jean-Francois Arnal ◽  
Françoise Lenfant ◽  
Raphaël Metivier ◽  
Gilles Flouriot ◽  
Daniel Henrion ◽  
...  

Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.


2015 ◽  
Vol 193 (4S) ◽  
Author(s):  
Chiuan-Ren Yeh ◽  
Iawen Hsu ◽  
Hiroshi Miyamoto ◽  
Xue-Ru Wu ◽  
Chawnshang Chang ◽  
...  


2011 ◽  
Vol 1 (1) ◽  
pp. 5 ◽  
Author(s):  
Danielle Meijer ◽  
Hans Gelderblom ◽  
Marcel Karperien ◽  
Anne-Marie Cleton-Jansen ◽  
Pancras CW Hogendoorn ◽  
...  


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27457 ◽  
Author(s):  
Sebastian Kummer ◽  
Stefanie Jeruschke ◽  
Lara Vanessa Wegerich ◽  
Andrea Peters ◽  
Petra Lehmann ◽  
...  


Oncotarget ◽  
2014 ◽  
Vol 5 (17) ◽  
pp. 7917-7935 ◽  
Author(s):  
Iawen Hsu ◽  
Chiuan-Ren Yeh ◽  
Spencer Slavin ◽  
Hiroshi Miyamoto ◽  
George J. Netto ◽  
...  


2019 ◽  
Vol 20 (4) ◽  
pp. 966 ◽  
Author(s):  
Ángel Salmerón-Hernández ◽  
María Noriega-Reyes ◽  
Albert Jordan ◽  
Noemi Baranda-Avila ◽  
Elizabeth Langley

Estrogen receptor alpha (ERα) has an established role in breast cancer biology. Transcriptional activation by ERα is a multistep process modulated by coactivator and corepressor proteins. Breast Cancer Amplified Sequence 2 (BCAS2), is a poorly studied ERα coactivator. In this work, we characterize some of the mechanisms through which this protein increases ERα activity and how this promotes carcinogenic processes in breast cancer cells. Using protein-protein interaction and luciferase assays we show that BCAS2 interacts with ERα both in vitro and in vivo and upregulates transcriptional activation of ERα directly through its N-terminal region (AF-1) and indirectly through its C-terminal (AF-2) region, acting in concert with AF-2 interacting coactivators. Elevated expression of BCAS2 positively affects proliferation, clonogenicity and migration of breast cancer cells and directly activates ERα regulated genes which have been shown to play a role in tumor growth and progression. Finally, we used signal transduction pathway inhibitors to elucidate how BCAS2 is regulated in these cells and observed that BCAS2 is preferentially regulated by the PI3K/AKT signaling pathway. BCAS2 is an AF-1 coactivator of ERα whose overexpression promotes carcinogenic processes, suggesting an important role in the development of estrogen-receptor positive breast cancer.



2001 ◽  
Vol 153 (5) ◽  
pp. 971-984 ◽  
Author(s):  
E. Bonnelye ◽  
L. Merdad ◽  
V. Kung ◽  
J.E. Aubin

The orphan nuclear estrogen receptor–related receptor α (ERRα), is expressed by many cell types, but is very highly expressed by osteoblastic cells in which it transactivates at least one osteoblast-associated gene, osteopontin. To study the putative involvement of ERRα in bone, we first assessed its expression in rat calvaria (RC) in vivo and in RC cells in vitro. ERRα mRNA and protein were expressed at all developmental stages from early osteoprogenitors to bone-forming osteoblasts, but protein was most abundant in mature cuboidal osteoblasts. To assess a functional role for ERRα in osteoblast differentiation and bone formation, we blocked its expression by antisense oligonucleotides in either proliferating or differentiating RC cell cultures and found inhibition of cell growth and a proliferation-independent inhibition of differentiation. On the other hand, ERRα overexpression in RC cells increased differentiation and maturation of progenitors to mature bone-forming cells. Our findings show that ERRα is highly expressed throughout the osteoblast developmental sequence and plays a physiological role in differentiation and bone formation at both proliferation and differentiation stages. In addition, we found that manipulation of receptor levels in the absence of known ligand is a fruitful approach for functional analysis of this orphan receptor and identification of potential target genes.



2011 ◽  
Vol 7 (3) ◽  
pp. 667-676 ◽  
Author(s):  
Giovanni Nassa ◽  
Roberta Tarallo ◽  
Pietro H. Guzzi ◽  
Lorenzo Ferraro ◽  
Francesca Cirillo ◽  
...  


2019 ◽  
Vol 19 (2) ◽  
pp. 531 ◽  
Author(s):  
Nunung Yuniarti ◽  
Sudi Mungkasi ◽  
Sri Hartati Yuliani ◽  
Enade Perdana Istyastono

Employing ensemble Protein-Ligand Interaction Fingerprints (ensPLIF) as descriptors in post retrospective Structure-Based Virtual Screening (SBVS) campaigns Quantitative Structure-Activity Relationship (QSAR) analysis has been proven to significantly increase the predictive ability in the identification of potent ligands for estrogen receptor alpha (ERα). In the research presented in this article, similar approaches have been performed to construct and retrospectively validate an SBVS protocol to identify marginal ligands for ERα. Based on both validated SBVS protocols, a graphical-user-interface (GUI) application to identify if a compound is a non-, moderate or potent ligand for ERα was developed. The GUI application was subsequently used to virtually screen genistin, genistein, daidzin, and daidzein, followed by in vitro test employing a cytotoxic assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method.



Sign in / Sign up

Export Citation Format

Share Document