Regulation of Pancreatic Beta-Cell Mass

2005 ◽  
Vol 85 (4) ◽  
pp. 1255-1270 ◽  
Author(s):  
Luc Bouwens ◽  
Ilse Rooman

Beta-cell mass regulation represents a critical issue for understanding diabetes, a disease characterized by a near-absolute (type 1) or relative (type 2) deficiency in the number of pancreatic beta cells. The number of islet beta cells present at birth is mainly generated by the proliferation and differentiation of pancreatic progenitor cells, a process called neogenesis. Shortly after birth, beta-cell neogenesis stops and a small proportion of cycling beta cells can still expand the cell number to compensate for increased insulin demands, albeit at a slow rate. The low capacity for self-replication in the adult is too limited to result in a significant regeneration following extensive tissue injury. Likewise, chronically increased metabolic demands can lead to beta-cell failure to compensate. Neogenesis from progenitor cells inside or outside islets represents a more potent mechanism leading to robust expansion of the beta-cell mass, but it may require external stimuli. For therapeutic purposes, advantage could be taken from the surprising differentiation plasticity of adult pancreatic cells and possibly also from stem cells. Recent studies have demonstrated that it is feasible to regenerate and expand the beta-cell mass by the application of hormones and growth factors like glucagon-like peptide-1, gastrin, epidermal growth factor, and others. Treatment with these external stimuli can restore a functional beta-cell mass in diabetic animals, but further studies are required before it can be applied to humans.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Alessandra Puddu ◽  
Roberta Sanguineti ◽  
François Mach ◽  
Franco Dallegri ◽  
Giorgio Luciano Viviani ◽  
...  

The primary function of pancreatic beta-cells is to produce and release insulin in response to increment in extracellular glucose concentrations, thus maintaining glucose homeostasis. Deficient beta-cell function can have profound metabolic consequences, leading to the development of hyperglycemia and, ultimately, diabetes mellitus. Therefore, strategies targeting the maintenance of the normal function and protecting pancreatic beta-cells from injury or death might be crucial in the treatment of diabetes. This narrative review will update evidence from the recently identified molecular regulators preserving beta-cell mass and function recovery in order to suggest potential therapeutic targets against diabetes. This review will also highlight the relevance for novel molecular pathways potentially improving beta-cell dysfunction.


Author(s):  
Sevim Kahraman ◽  
Ozlem Yilmaz ◽  
Hasan Ali Altunbas ◽  
Ercument Dirice ◽  
Ahter Dilsad Sanlioglu

Strategies to increase functional pancreatic beta cell mass is of great interest in diabetes-related research. TNF-related apoptosis-inducing ligand (TRAIL) is well-known to promote proliferation and survival in various cell types, including vascular smooth muscle and endothelial cells. Correlation between the protective nature of TRAIL on these cells and its proliferative effect is noteworthy. TRAIL’s seemingly protective/therapeutic effect in diabetes prompted us to question whether it may act as an inducer of proliferation in pancreatic beta cells. We used rat primary islet cells and MIN6 mouse beta cell line to investigate TRAIL-induced proliferation. Cell viability and/or death was analysed by MTT, WST-1, and annexin-V/PI assays, while proliferation rates and pathways were assessed via immunocytochemical and Western blot analyses. Receptor neutralization antibodies identified the mediator receptors. Recombinant soluble TRAIL (sTRAIL) treatment led to 1.6-fold increased proliferation in insulin-positive cells in dispersed rat islets compared to the untreated group, while adenovirus-mediated overexpression of TRAIL increased the number of proliferating beta cells up to more than 6-fold. sTRAIL or adenoviral vector-mediated TRAIL overexpression induced proliferation in MIN6 cells also. TRAIL’s proliferative effect was mediated via AKT activation, which was suppressed upon specific inhibition. Neutralization of each TRAIL receptor reversed the proliferative effect to some degree, with the highest level of inhibition in death receptor 5 (DR5) blockage in MIN6 cells, and in decoy receptor 1 (DcR1) blockage in primary rat beta cells. Thus, TRAIL induces proliferation in rodent pancreatic beta cells through activation of the AKT pathway.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Elisa Fernández-Millán ◽  
Carlos Guillén

Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.


Author(s):  
Ryland D. Mortlock ◽  
Senta K. Georgia ◽  
Stacey D. Finley

Abstract Introduction The expansion of insulin-producing beta cells during pregnancy is critical to maintain glucose homeostasis in the face of increasing insulin resistance. Prolactin receptor (PRLR) signaling is one of the primary mediators of beta cell expansion during pregnancy, and loss of PRLR signaling results in reduced beta cell mass and gestational diabetes. Harnessing the proliferative potential of prolactin signaling to expand beta cell mass outside of the context of pregnancy requires quantitative understanding of the signaling at the molecular level. Methods A mechanistic computational model was constructed to describe prolactin-mediated JAK-STAT signaling in pancreatic beta cells. The effect of different regulatory modules was explored through ensemble modeling. A Bayesian approach for likelihood estimation was used to fit the model to experimental data from the literature. Results Including receptor upregulation, with either inhibition by SOCS proteins, receptor internalization, or both, allowed the model to match experimental results for INS-1 cells treated with prolactin. The model predicts that faster dimerization and nuclear import rates of STAT5B compared to STAT5A can explain the higher STAT5B nuclear translocation. The model was used to predict the dose response of STAT5B translocation in rat primary beta cells treated with prolactin and reveal possible strategies to modulate STAT5 signaling. Conclusions JAK-STAT signaling must be tightly controlled to obtain the biphasic response in STAT5 activation seen experimentally. Receptor up-regulation, combined with SOCS inhibition, receptor internalization, or both is required to match experimental data. Modulating reactions upstream in the signaling can enhance STAT5 activation to increase beta cell survival.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebeca Fernandez-Ruiz ◽  
Ainhoa García-Alamán ◽  
Yaiza Esteban ◽  
Joan Mir-Coll ◽  
Berta Serra-Navarro ◽  
...  

AbstractExpanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass.


2019 ◽  
Vol 11 (9) ◽  
pp. 747-760 ◽  
Author(s):  
Yunxia Zhu ◽  
Yi Sun ◽  
Yuncai Zhou ◽  
Yan Zhang ◽  
Tao Zhang ◽  
...  

AbstractCurrent research indicates that beta cell loss in type 2 diabetes may be attributed to beta cell dedifferentiation rather than apoptosis; however, the mechanisms by which this occurs remain poorly understood. Our previous study demonstrated that elevation of microRNA-24 (miR-24) in a diabetic setting caused beta cell dysfunction and replicative deficiency. In this study, we focused on the role of miR-24 in beta cell apoptosis and dedifferentiation under endoplasmic reticulum (ER) stress conditions. We found that miR-24 overabundance protected beta cells from thapsigargin-induced apoptosis at the cost of accelerating the impairment of glucose-stimulated insulin secretion (GSIS) and enhancing the presence of dedifferentiation markers. Ingenuity® Pathway Analysis (IPA) revealed that elevation of miR-24 had an inhibitory effect on XBP1 and ATF4, which are downstream effectors of two key branches of ER stress, by inhibiting its direct target, Ire1α. Notably, elevated miR-24 initiated another pathway that targeted Mafa and decreased GSIS function in surviving beta cells, thus guiding their dedifferentiation under ER stress conditions. Our results demonstrated that the elevated miR-24, to the utmost extent, preserves beta cell mass by inhibiting apoptosis and inducing dedifferentiation. This study not only provides a novel mechanism by which miR-24 dominates beta cell turnover under persistent metabolic stress but also offers a therapeutic consideration for treating diabetes by inducing dedifferentiated beta cells to re-differentiation.


Diabetologia ◽  
2013 ◽  
Vol 57 (3) ◽  
pp. 542-553 ◽  
Author(s):  
Iseki Takamoto ◽  
Naoto Kubota ◽  
Keizo Nakaya ◽  
Katsuyoshi Kumagai ◽  
Shinji Hashimoto ◽  
...  

2014 ◽  
Vol 58 (10) ◽  
pp. 1980-1990 ◽  
Author(s):  
Iris Mathijs ◽  
Daniel A. Da Cunha ◽  
Eddy Himpe ◽  
Laurence Ladriere ◽  
Nireshni Chellan ◽  
...  

2019 ◽  
Vol 241 (1) ◽  
pp. 45-57 ◽  
Author(s):  
A Edlund ◽  
M Barghouth ◽  
M Hühn ◽  
M Abels ◽  
J S E Esguerra ◽  
...  

Cystic fibrosis-related diabetes (CFRD) is a common complication for patients with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The cause of CFRD is unclear, but a commonly observed reduction in first-phase insulin secretion suggests defects at the beta cell level. Here we aimed to examine alpha and beta cell function in the Cftr tm1 EUR/F508del mouse model (C57BL/6J), which carries the most common human mutation in CFTR, the F508del mutation. CFTR expression, beta cell mass, insulin granule distribution, hormone secretion and single cell capacitance changes were evaluated using islets (or beta cells) from F508del mice and age-matched wild type (WT) mice aged 7–10 weeks. Granular pH was measured with DND-189 fluorescence. Serum glucose, insulin and glucagon levels were measured in vivo, and glucose tolerance was assessed using IPGTT. We show increased secretion of proinsulin and concomitant reduced secretion of C-peptide in islets from F508del mice compared to WT mice. Exocytosis and number of docked granules was reduced. We confirmed reduced granular pH by CFTR stimulation. We detected decreased pancreatic beta cell area, but unchanged beta cell number. Moreover, the F508del mutation caused failure to suppress glucagon secretion leading to hyperglucagonemia. In conclusion, F508del mice have beta cell defects resulting in (1) reduced number of docked insulin granules and reduced exocytosis and (2) potential defective proinsulin cleavage and secretion of immature insulin. These observations provide insight into the functional role of CFTR in pancreatic islets and contribute to increased understanding of the pathogenesis of CFRD.


Sign in / Sign up

Export Citation Format

Share Document