X-ray diffraction characterization of the microstructure of close-packed hexagonal nanomaterials

2008 ◽  
Vol 23 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Zhao-hui Pu ◽  
Chuan-zheng Yang ◽  
Pei Qin ◽  
Yu-wan Lou ◽  
Li-fang Cheng

A general least-squares technique for X-ray diffraction line broadening analysis has been developed. The technique can be used to determine single, double, and triple line broadening effects caused by small particle sizes, microstrain, stacking faults, or all three presented in a closed-packed hexagonal nanomaterial. The technique was applied to characterize the microstructure of β-Ni(OH)2, a negative electrode material in nickel-metal hydride (NiMH) batteries. Double line broadening effects caused by both small crystallite sizes and stacking faults in β-Ni(OH)2 were detected and analyzed. Triple line broadening effects caused simultaneously by small crystallite sizes, microstrain, and stacking faults were detected in β-Ni(OH)2 after activation and charge-discharge cycle tests. The triple line broadening effects were found to be selective and most pronounced for diffraction lines with h−k=3n±1. The broadening effects were larger when l=even, but smaller when l=odd. The shape and the average size of the crystallites, microstrain, and stacking fault probability in β-Ni(OH)2 changed dramatically after activation and charge-discharge cycles. The method was also applied to characterize and investigate the microstructure of nano ZnO materials. Results indicate that no selective broadening appears in the XRD patterns of the nano ZnO materials. The average crystallite sizes were different slightly, and the stacking fault probabilities differed significantly with different dopants.

1994 ◽  
Vol 376 ◽  
Author(s):  
M. Vrána ◽  
P. Klimanek ◽  
T. Kschidock ◽  
P. Lukáš ◽  
P. Mikula

ABSTRACTInvestigation of strongly distorted crystal structures caused by dislocations, stacking-faults etc. in both plastically deformed f.c.c. and b.c.c. metallic materials was performed by the analysis of the neutron diffraction line broadening. Measurements were realized by means of the high resolution triple-axis neutron diffractometer equipped by bent Si perfect crystals as monochromator and analyzer at the NPI Řež. The substructure parameters obtained in this manner are in good agreement with the results of X-ray diffraction analysis.


2001 ◽  
Vol 391 (1) ◽  
pp. 42-46 ◽  
Author(s):  
A. Boulle ◽  
C. Legrand ◽  
R. Guinebretière ◽  
J.P. Mercurio ◽  
A. Dauger

2016 ◽  
Vol 858 ◽  
pp. 147-150 ◽  
Author(s):  
Mojmír Meduňa ◽  
Thomas Kreiliger ◽  
Ivan Prieto ◽  
Marco Mauceri ◽  
Marco Puglisi ◽  
...  

The stacking faults (SFs) in 3C-SiC epitaxially grown on ridges deeply etched into Si (001) substrates offcut towards [110] were quantitatively analyzed by electron microscopy and X-ray diffraction. A significant reduction of SF density with respect to planar material was observed for the {111} planes parallel to the ridges. The highest SF density was found in the (-1-11) plane. A previously observed defect was identified as twins by electron backscatter diffraction.


2008 ◽  
Vol 42 (1) ◽  
pp. 1-9 ◽  
Author(s):  
L. Olikhovska ◽  
A. Ustinov

Features of the X-ray intensity distributions caused by the presence of random and nonrandom stacking faults (irregular intergrowths) in layered perovskite-like oxides are studied by a computer simulation technique. It is shown that, apart from the stacking fault properties, the position, profile and intensity of a diffraction peak are dependent on the ratio between theclattice parameter of the crystal and the thickness of the new structural fragment formed as a result of the stacking fault. A means of characterizing the stacking faults on the basis of the relative positions of pairs of diffraction peaks is presented. The approach is exemplified by the X-ray diffraction study of a disordered single crystal of the system Bi–Sr–Ca–Cu–O.


Author(s):  
Simge GencalpIrizalp ◽  
Nursen Saklakoglu

In this study, nano-scale microstructural evolution in 6061-T6 alloy after laser shock processing (LSP) were studied. 6061-T6 alloy plate were subjected to multiple LSP. The LSP treated area was characterized by X-ray diffraction and the microstructure of the samples was analyzed by transmission electron microscopy. Focused Ion Beam (FIB) tools were used to prepare TEM samples in precise areas. It was found that even though aluminum had high stacking fault energy, LSP yielded to formation of ultrafine grains and deformation faults such as dislocation cells, stacking faults. The stacking fault probability (PSF) was obtained in LSP-treated alloy using X-Ray diffraction. Deformation induced stacking faults lead to the peak position shifts, broadening and asymmetry of diffraction. XRD analysis and TEM observations revealed significant densities of stacking faults in LSP-treated 6061-T6 alloy. And mechanical properties of LSP-treated alloy were also determined to understand the hardening behavior with high concentration of structural defects.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Markus Pristovsek ◽  
Martin Fentrup ◽  
Tongtong Zhu ◽  
Gunnar Kusch ◽  
Colin Humphreys

Basal plane stacking faults (BSF) in GaN (11-22) layers were observed by a laboratory X-ray diffraction (XRD) system. For this, the (11-22) GaN was oriented in the [-12-10] zone for...


2011 ◽  
Vol 44 (4) ◽  
pp. 779-787 ◽  
Author(s):  
Stefan Martin ◽  
Christiane Ullrich ◽  
Daniel Šimek ◽  
Ulrich Martin ◽  
David Rafaja

Plastic deformation of highly alloyed austenitic transformation-induced plasticity (TRIP) steels with low stacking fault energy leads typically to the formation of ∊-martensite within the original austenite. The ∊-martensite is often described as a phase having a hexagonal close-packed crystal structure. In this contribution, an alternative structure model is presented that describes ∊-martensite embedded in the austenitic matrixviaclustering of stacking faults in austenite. The applicability of the model was tested on experimental X-ray diffraction data measured on a CrMnNi TRIP steel after 15% compression. The model of clustered stacking faults was implemented in theDIFFaXroutine; the faulted austenite and ∊-martensite were represented by different stacking fault arrangements. The probabilities of the respective stacking fault arrangements were obtained from fitting the simulated X-ray diffraction patterns to the experimental data. The reliability of the model was proven by scanning and transmission electron microscopy. For visualization of the clusters of stacking faults, the scanning electron microscopy employed electron channelling contrast imaging and electron backscatter diffraction.


1961 ◽  
Vol 5 ◽  
pp. 104-116 ◽  
Author(s):  
R. C. Rau

AbstractIncreasing interest in the sintering characteristics of various ceramic materials has resulted in the need for a knowledge of the crystallite sizes of many constituent ceramic powders. Standard X-ray diffraction line-broadening techniques have been utilized to determine these crystallite sizes. This paper presents a general review of the theory of line broadening as a means of measuring crystallite size and gives the methods and modifications used to perform this type of analysis rapidly and on a routine basis.Four modifications have been used in the determination of crystallite size routinely by X-ray line broadening. These methods are (1) a graded set of powder photographs, (2) a computer program to calculate sizes from diffractometer data, (3) a set of crystallite-size curves for a given material for use with diffractometer data, and (4) a standard set of curves to use with diffractometer data for any strain-free materials. The preparation, use, and limitations of each of these methods is presented.


1988 ◽  
Vol 41 (2) ◽  
pp. 251 ◽  
Author(s):  
B Morosin ◽  
RA Graham ◽  
Y Zhang ◽  
JM Stewart ◽  
CR Hubbard

Zirconia (Zr02) powder compacts have been subjected to controlled, quantitative high pressure shock loading at peak pressures from 5-27 GPa and preserved for post-shock analysis. The overlapping broadened X-ray diffraction peak profiles have been separated by least-squares fitting procedures. The separate lines have been analysed in the usual manner to determine the residual lattice strain and the coherent crystallite sizes. Maximum modification effects are observed near 20 GPa with strain values near 3 x 10-3 and size values near 200 A.


Sign in / Sign up

Export Citation Format

Share Document