scholarly journals X-ray Line Broadening Study on Shock-modified Zirconia

1988 ◽  
Vol 41 (2) ◽  
pp. 251 ◽  
Author(s):  
B Morosin ◽  
RA Graham ◽  
Y Zhang ◽  
JM Stewart ◽  
CR Hubbard

Zirconia (Zr02) powder compacts have been subjected to controlled, quantitative high pressure shock loading at peak pressures from 5-27 GPa and preserved for post-shock analysis. The overlapping broadened X-ray diffraction peak profiles have been separated by least-squares fitting procedures. The separate lines have been analysed in the usual manner to determine the residual lattice strain and the coherent crystallite sizes. Maximum modification effects are observed near 20 GPa with strain values near 3 x 10-3 and size values near 200 A.

1987 ◽  
Vol 31 ◽  
pp. 287-294 ◽  
Author(s):  
Y. Zhang ◽  
J. M. Stewart ◽  
B. Morosin ◽  
R. A. Graham ◽  
C. R. Hubbard

AbstractHematite (α-Fe2O3) powder compacts have been subjected to controlled, quantitative high pressure shock loading at peak pressures from 8-27 GPa and preserved for post shook analysis. The broadened x-ray diffraction peak profiles have been analyzed to determine the residual lattice strain and the coherent crystallite sizes. Maximum modification effects are observed near 17 GPa with strain values near 3 x 10-3 and size values near 200 Å suggesting annealing at higher shock pressure, resulting from the higher shock temperature.


1983 ◽  
Vol 24 ◽  
Author(s):  
B. Morosin ◽  
R. A. Graham

ABSTRACTPowders of AlN, TiC and TiB2 have been subjected to controlled shock loading with peak pressures in the samples between 14 to 27 GPa and preserved for post-shock study. Broadened x-ray diffraction peak profiles are analyzed by a simplified method and show increases in residual lattice strain and small decreases in crystallite size. Strain values range from 10−5 to 10−4 for TiB2 and to values larger than 10−3 for TiC and AlN.


2008 ◽  
Vol 23 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Zhao-hui Pu ◽  
Chuan-zheng Yang ◽  
Pei Qin ◽  
Yu-wan Lou ◽  
Li-fang Cheng

A general least-squares technique for X-ray diffraction line broadening analysis has been developed. The technique can be used to determine single, double, and triple line broadening effects caused by small particle sizes, microstrain, stacking faults, or all three presented in a closed-packed hexagonal nanomaterial. The technique was applied to characterize the microstructure of β-Ni(OH)2, a negative electrode material in nickel-metal hydride (NiMH) batteries. Double line broadening effects caused by both small crystallite sizes and stacking faults in β-Ni(OH)2 were detected and analyzed. Triple line broadening effects caused simultaneously by small crystallite sizes, microstrain, and stacking faults were detected in β-Ni(OH)2 after activation and charge-discharge cycle tests. The triple line broadening effects were found to be selective and most pronounced for diffraction lines with h−k=3n±1. The broadening effects were larger when l=even, but smaller when l=odd. The shape and the average size of the crystallites, microstrain, and stacking fault probability in β-Ni(OH)2 changed dramatically after activation and charge-discharge cycles. The method was also applied to characterize and investigate the microstructure of nano ZnO materials. Results indicate that no selective broadening appears in the XRD patterns of the nano ZnO materials. The average crystallite sizes were different slightly, and the stacking fault probabilities differed significantly with different dopants.


1983 ◽  
Vol 27 ◽  
pp. 369-378
Author(s):  
B. Morosin ◽  
E. J. Graeber ◽  
R. A. Graham

Enhanced solid state reactivity of materials both during and after shock compression has been attributed to the introduction of large numbers of defects into the crystalline lattices and to reduction in the particle and crystallite size of powders [1,2]. Line broadening of x-ray diffraction profiles provides a means to determine the residual lattice strain resulting from such defect concentrations as well as a means to determine the coherent crystallite size. Various diffraction studies on shock-loaded powder materials have previously been reported and much of this work primarily by Soviet and Japanese scientists has recently been reviewed [2]. Cohen has reported results on shock-loaded copper [3]. In prior work, however, shock, pressures have not typically been quantified and there are few detailed line broadening investigations of refractory inorganic powders [1,4,5]. The present study on shock-loaded alumina powders is a detailed investigation of the influence of shock loading on residual lattice strain and coherent crystallite size.


1983 ◽  
Vol 27 ◽  
pp. 379-388
Author(s):  
B. Morosin ◽  
E. J. Graeber ◽  
R. A. Graham

Enhanced solid state reactivity of materials both during and after shock compression has been attributed to the introduction of large numbers of defects into the crystalline lattices and to reduction in the particle and crystallite size of powders [1]. In particular, orders of magnitude increases in the catalytic activity has been observed In shock-modified TiO2 [2]. Line broadening of x-ray diffraction profiles provides a means to determine the coherent crystallite size and the residual lattice strain resulting from defect concentrations. The present study on shock-loaded rutile is a detailed Investigation of the influence of shock loading on residual lattice strain and coherent crystallite size. Annealing of shock-modified rutile powders is also studied.


1961 ◽  
Vol 5 ◽  
pp. 104-116 ◽  
Author(s):  
R. C. Rau

AbstractIncreasing interest in the sintering characteristics of various ceramic materials has resulted in the need for a knowledge of the crystallite sizes of many constituent ceramic powders. Standard X-ray diffraction line-broadening techniques have been utilized to determine these crystallite sizes. This paper presents a general review of the theory of line broadening as a means of measuring crystallite size and gives the methods and modifications used to perform this type of analysis rapidly and on a routine basis.Four modifications have been used in the determination of crystallite size routinely by X-ray line broadening. These methods are (1) a graded set of powder photographs, (2) a computer program to calculate sizes from diffractometer data, (3) a set of crystallite-size curves for a given material for use with diffractometer data, and (4) a standard set of curves to use with diffractometer data for any strain-free materials. The preparation, use, and limitations of each of these methods is presented.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avanish Mishra ◽  
Cody Kunka ◽  
Marco J. Echeverria ◽  
Rémi Dingreville ◽  
Avinash M. Dongare

AbstractDuring the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.


Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


Sign in / Sign up

Export Citation Format

Share Document