An Approach to the Solid Solution Problem Using a Computerized Identification Technique

1969 ◽  
Vol 13 ◽  
pp. 539-549
Author(s):  
Gerald G. Johnson ◽  
Frank L. Chan

Since for most real systems, solid solution effects influence the position and intensity of the x-ray powder diffraction pattern, it is desirable and necessary to have an automatic system which will identify standard reference phases regardless of the amount of solid solution. Using the system CdS-ZnS, where the lattice parameter a0 changes from 4.136 to 3.820Å, with complete solid solution over the entire range of composition, an illustrative study was made. This work presents the results obtained from a computer analysis of the powder pattern obtained. It has been found that if the starting chemistry is known and the end members of the series are in the ASTM Powder Diffraction File, that the solid solution can be identified. Once the phases present are identified, a plot following Vegard's law yields the approximate composition of the sample under consideration. These two methods of compositional determination agree quite well. Examples of the computer system and description of the program input and output with interpretation of the results will be discussed.

1996 ◽  
Vol 11 (4) ◽  
pp. 268-275 ◽  
Author(s):  
Winnie Wong-Ng ◽  
F. Jiang ◽  
Bryan R. Jarabek ◽  
Gregory J. McCarthy

Powder X-ray diffraction was used to investigate the solid solution range of the Bi14SrxCa12−xO33 series in the Bi–Sr–Ca–O system. Solid solution forms over the range 1≤x≤7 in Bi14SrxCa12−xO33. Experimental X-ray reference patterns of selected members with x=1, 3, 5, and 7 have been prepared for the powder diffraction file (PDF). These phases are monoclinic, C2/m, with cell parameter a ranging from 21.473(4) to 21.868(4) Å, b from 4.3564(9) to 4.3898(9) Å, c from 12.753(2) to 12.962(2) Å, β from 102.91(2)° to 102.79(1)°, and V from 1162.9(3) to 1213.5(3) Å3, respectively. These parameters increase monotonically as Ca is continuously replaced by the larger Sr.


1992 ◽  
Vol 7 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Brian J. Reardon ◽  
Camden R. Hubbard

AbstractX-ray powder patterns for the phases in the CaO-SrO-CuO ternary system, along with the corresponding crystal structures, were obtained from the literature and from the Powder Diffraction File. Available XRD patterns were compared with each other and with a calculated pattern for each phase, yielding a recommended reference pattern. The simulated powder patterns presented here deal with the phases found within the (Ca,Sr)O, (Ca,Sr)2CuO3, (Ca,Sr)14Cu24O41, (Ca,Sr)CuO2, (Ca,Sr)Cu2O3, and (Ca,Sr)Cu2O2 solid solution series and are recommended for the Powder Diffraction File (PDF).


1999 ◽  
Vol 14 (3) ◽  
pp. 181-189 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
R. A. Young ◽  
F. Jiang ◽  
L. J. Swartzendruber ◽  
...  

The structures of the solid solution series (Sr4−δCaδ)PtO6, with δ=0, 0.85(1), 2, and 3, have been investigated using the Rietveld refinement technique with laboratory X-ray powder diffraction data. A complete solid solution between Sr and Ca was confirmed to exist. These compounds crystallize in the rhombohedral space group R3¯c. The cell parameters of the series range from a of 9.4780(3) to 9.7477(1) Å, and c from 11.3301(4) to 11.8791(1) Å for δ from 3 to 0, respectively. The structure consists of chains of alternating trigonal prismatic (Sr, Ca)O6 and octahedral PtO6 units running parallel to the c axis. These chains are connected to each other via a second type of (Sr, Ca) ions, which are surrounded by eight oxygens, in a distorted square antiprismatic geometry. As Ca replaced Sr in Sr4PtO6, it was found to substitute preferentially in the smaller octahedral (Sr, Ca)1 site (6a) rather than at the eight-coordinate (Sr, Ca)2 site (18e). There appears to be an anomaly of cell parameters a and c at the compound Sr3.15Ca0.85PtO6. Their dependence on Ca content changes at δ≈1.00, where the Ca has fully replaced Sr in the 6a site. The substitution of Sr by Ca reduced the average (Sr, Ca)1–O length from 2.411 to 2.311 Å and (Sr, Ca)2–O from 2.659 to 2.570 Å as the composition varied from Sr4PtO6 to SrCa3PtO6. Reference X-ray powder diffraction patterns were prepared from the Rietveld refinement results for these members of the solid solution series. Magnetic susceptibility measurements of three of the samples (δ=0, 0.85, 2) show electronic transitions at low temperatures.


2010 ◽  
Vol 659 ◽  
pp. 31-36
Author(s):  
Támas Korim

Solid solutions formed within the Al2O3-TiO2-Fe2O3 (Fe2xAl2(1-x)TiO5) system upon heat treatment were investigated by adjusting the substituting Fe3+ content in the range of x=0.0 to 1.0. X-ray diffraction phase analyses and lattice parameter determinations confirmed that substitution of Fe3+ ions within the aluminium titanate lattice was complete. For this complete solid solution, however, the trends observed for changes in d-spacing values indicated that there were certain discrete compositions to identify with Fe3+ substitution. Within these, Fe0.4Al1.6TiO5 and Fe1.6Al0.4TiO5 crystalline phases were investigated in detail and their X-ray diffraction cards were constructed. Self-healing effect occurring in repeated heating-cooling cycles in Fe3+ doped AT ceramics were proved; it was demonstrated that Fe3+ doped AT ceramics do not decompose even if exposed to repeated thermal shock.


1992 ◽  
Vol 7 (2) ◽  
pp. 96-98 ◽  
Author(s):  
Brian J. Reardon ◽  
Camden R. Hubbard

AbstractX-ray powder patterns for the phases in the CaO-SrO-PbO ternary system, along with the corresponding crystal structures, were obtained from the literature and from the Powder Diffraction File. Available XRD patterns were compared with each other and with a simulated pattern for each phase, yielding a recommended reference pattern. The simulated powder patterns presented here deal with the phases found within the (Ca,Sr)2PbO4solid solution series and are recommended for the Powder Diffraction File (PDF).


1998 ◽  
Vol 13 (4) ◽  
pp. 232-240 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
W. Greenwood

The crystal structure of the solid solution alkaline earth plumbate phase Sr4−xCaxPb2O8 was investigated using the X-ray Rietveld technique for x=1, 2, and 3. The lattice parameters a, b, c, and V were found to decrease linearly as the Sr at site 4h was replaced by Ca. The structure features chains of edge-sharing PbO6 octahedra, linked by seven-coordinated (Ca/Sr)–O monocapped trigonal prisms. The structure is similar to that of Pb3O4, which can be reformulated as Pb2IIPbIVO4. X-ray diffraction patterns for the solid solution members SrCa3Pb2O8, Sr2Ca2Pb2O8, and Sr3CaPb2O8 were prepared for inclusion in the Powder Diffraction File.


2004 ◽  
Vol 19 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Werner Fischer ◽  
Lorenz Singheiser ◽  
Debabrata Basu ◽  
Amit Dasgupta

The crystal structure of several compounds of Ca1−xSrxZr4(PO4)6 ceramics has been investigated by X-ray powder diffraction at room temperature. All compounds form a solid solution with a unique unit cell. While the lattice parameter a of the hexagonal unit cell decreases of about 0.9% with increasing Sr content only slightly, it considerably elongates in c direction (2.8%). No structural transformation has been observed by high-temperature X-ray diffraction up to 1000 °C.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1068 ◽  
Author(s):  
Shota Tamura ◽  
Tsutomu Mashimo ◽  
Kenta Yamamoto ◽  
Zhazgul Kelgenbaeva ◽  
Weijan Ma ◽  
...  

We synthesized Pd-Fe series nanoparticles in solid solution using pulsed plasma in liquid with Pd-Fe bulk mixture electrodes. The Pd-Fe atomic percent ratios were 1:3, 1:1, and 3:1, and the particle size was measured to be less than 10 nm by high-resolution transmission electron microscopy (HR-TEM). The nanoparticles showed face-centered cubic structure. The lattice parameter increased with increasing Pd content and followed Vegard’s law, and energy-dispersive X-ray spectra were consistent with the ratios of the starting samples, which showed a solid solution state. The solid solution structure and local structure were confirmed by HR-TEM and X-ray absorption fine structure.


1998 ◽  
Vol 62 (04) ◽  
pp. 471-475 ◽  
Author(s):  
P. W. Millsteed

Abstract Microprobe analysis of marshite and miersite from Broken Hill, Australia, demonstrate extensive solid solution between the end-members CuI and AgI, indicating the possibility of a complete solid-solution series. Unit-cell parameters increase from 6.054 Å for marshite to 6.504 Å for miersite, closely following Vegard's Law. The Cu content of iodargyrite is generally below the limit of detection, but one zoned crystal contained 0.28 wt.% Cu. Crystallization of either miersite or iodargyrite at Broken Hill appears to be dependent upon the local availability and ratio of copper, silver and iodine ions.


1990 ◽  
Vol 5 (3) ◽  
pp. 125-130 ◽  
Author(s):  
M. Shimazu ◽  
Y. Kubota ◽  
T. Wada ◽  
S. Tsutsumi

AbstractBa2NaNb5,O15 and eighteen additional compositions in the NaNbO3-BaNb2O6 system from 60 to 85 mole % BaNb2O6 have been prepared and studied by X-ray powder diffraction. A calculated pattern has been used to aid in indexing the powder pattern of stoichiometric Ba2NaNb5O15(BNN-S). The lattice parameters of BNN-S have been determined from repeated measurements of 2 higher order reflections and are a=b=17.5994(8)Å and c=7.9771(9)Å. A comparison with the Powder Diffraction File (PDF) 34-210 indicates that the present data provide a more precise match to the unit cell, include additional weak reflections and cover a greater 2θ range. There is a tungsten bronzetype solid solution range from 60 to 75 mole % BaNb2O6.


Sign in / Sign up

Export Citation Format

Share Document