High Resolution X-ray Diffraction for the Characterization of Semiconducting Materials

1989 ◽  
Vol 33 ◽  
pp. 1-11 ◽  
Author(s):  
B. K. Tanner

AbstractUse of a reference crystal to condition the beam in the double-axis diffractometer permits the Bragg peak width to be reduced to the correlation of the two crystal reflecting ranges. Some recent applications of double axis diffractometry to the study of heteroepitaxial layers are discussed. The advantages of multiple reflections for beam conditioning and the four reflection DuMond monochromator are examined. Glancing incidence and exit diffractometry permits the study of very thin layers, down to a few tens of nanometres in thickness and both synchrotron radiation and skew reflections can be used to tune the glancing angle close to the critical angle. Recent applications of triple-axis diffraction, where an analyzer crystal is used after the specimen, to the study of very thin single epitaxial layers and multiquantum well structures are reviewed.

1988 ◽  
Vol 32 ◽  
pp. 311-321 ◽  
Author(s):  
R.A. Larsen ◽  
T.F. McNulty ◽  
R.P. Goehner ◽  
K.R. Crystal

AbstractThe use of conventional θ/2θ diffraction methods for the characterization of polycrystalline thin films is not in general a satisfactory technique due to the relatively deep penetration of x-ray photons in most materials. Glancing incidence diffraction (GID) can compensate for the penetration problems inherent in the θ/2θ geometry. Parallel beam geometry has been developed in conjunction with GID to eliminate the focusing aberrations encountered when performing these types of measurements. During the past yearwe developed a parallel beam attachment which we have successfully configured to a number of systems.


2017 ◽  
Vol 24 (5) ◽  
pp. 981-990 ◽  
Author(s):  
Arman Davtyan ◽  
Sebastian Lehmann ◽  
Dominik Kriegner ◽  
Reza R. Zamani ◽  
Kimberly A. Dick ◽  
...  

Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\bar{1}] direction in the vicinity of the wurtzite 00\bar{1}\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.


2013 ◽  
Vol 203-204 ◽  
pp. 193-197
Author(s):  
Piotr Sagan ◽  
Volodymyr Popovych ◽  
Mariusz Bester ◽  
Marian Kuzma

In this paper we have obtained CdCrTe thin layers by PLD method using the YAG:Nd3+ laser with pulse length 250μs. Synthesized CdCrTe solid solution with 50% at. of Cr has been taken as a target. The layers were deposited on KCl substrate. The target and films were analyzed using X-ray diffraction, TEM microscope and THEED electron diffraction. The morphology of the layers are homogenous. However, we have detected several crystallographic phases: cubic CdTe, hexagonal Cr and hexagonal Te. From the measurements of lattice constant of the layer, their composition was determined to be x=0,14


1993 ◽  
Vol 26 (4A) ◽  
pp. A173-A176
Author(s):  
O Pacherova ◽  
Z Sourek ◽  
J Kub

1988 ◽  
Vol 140 ◽  
Author(s):  
M. S. Donley ◽  
P. T. Murray ◽  
N. T. McDevitt

AbstractThe growth and characterization of MoS thin films grown by pulsed laser evaporation is investigated. TOF anafysis of the ions evaporated from an MoS2 target indicates that PLE results primarily in the evaporation of atomic Mo and S species; MoxSy clusters were also detected, but were present at a significantly Iower intensity. TOF velocity analysis indicates an effective plasma temperature of 1500K. Stoichiometric MoS2 films were grown at substrate temperatures between room temperature and 500ºC under the above laser conditions. XPS data is used to develop a Wagner chemical state plot. Analysis of the films by Raman spectroscopy and glancing angle x-ray diffraction indicates the films to be crystalline, hexagonal MoS2, with a tendency for basal plane orientation parallel to the substrate.


Author(s):  
Tang Ing Hua ◽  
Rita Sundari

This study has encountered with the fabrication of ferrites (Mg and Mn) using citric acid as anionic surfactant in sol-gel method followed by calcinations at varied temperatures (300, 600, 800°C) for 2h, respectively. The fabricated ferrites have been characterized by FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-Ray Diffraction), SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope). The FTIR spectrum for MnFeO3 shows that some functional groups already removed under 300°C calcination due to several oxidation numbers possessed by Mn leading to more flexibility. The XRD diffractograms for both MgFe2O4 and MnFeO3 show that the transition phase from amorphous to crystalline structure occurred in the temperature range of 300-600°C. The SEM mappings based on the Fe distribution for both MgFe2O4 and MnFeO3 show that more Fe distributed over the ferrites surface at 600 and 800°C, while the SEM mappings for both ferrites (Mg and Mn) show less Fe distribution at 300°C calcination, thus, it indicates more repulsion force bearing by higher amounts of Fe atoms at higher thermal agitation due to volume expansion. The TEM spectra proved that both ferrites existed as crystals after calcined at 600°C. The fabricated ferrites have remarkable electrical properties useful for the manufacture of semiconducting materials.


1986 ◽  
Vol 82 ◽  
Author(s):  
D.K. Bowen ◽  
M.J. Hill ◽  
B.K. Tanner

ABSTRACTThe application of double crystal X-ray diffractometry and computer simulation to the characterization of lattice parameter variations through the thickness of heteroepitaxial layers is reviewed. The sensitivity is demonstrated in studies of graded layers grown by vapour phase epitaxy. Capping layers significantly affect rocking curves from superlattice structures. The use of glancing angle diffraction to characterize thin, low period multilayers is examined.


2017 ◽  
Vol 7 (3) ◽  
Author(s):  
Mohammad Hossein Manzari

In this study, thin films of pure ZnO and  doped ZnO with different percentages of gallium (0.5, 1, 2 and 4vt. %) on the glass substrates were deposited by using sol-gel method via spin coating technique at 2500 rpm, and all layers were annealed at 200°C for 1h and then Were examined their electrical, optical and structural properties. Concentration of all solution was 0.1M. The results show that the optimized layer is 0.5% GZO. By examining the transmittance spectrums we find that by doping the transparency of samples were improved and all samples in the visible areas 400-800nm are transparent. The electrical conductivity of all samples has been measured by four-point probe technique. The electrical conductivitys of pure ZnO sample and 0.5% GZO are 910-5 S/cm and 110-4 S/cm respectively. It can be a good choice for optoelectronic applications. Also X-ray diffraction results showed that diffraction peaks of 0.5% GZO sample have a small changes towards lower angles compared to the diffraction peaks of ZnO.


Sign in / Sign up

Export Citation Format

Share Document