scholarly journals Preparation and Characterization of ZnO Thin Layers with Various Percentages of Gallium Impurities

2017 ◽  
Vol 7 (3) ◽  
Author(s):  
Mohammad Hossein Manzari

In this study, thin films of pure ZnO and  doped ZnO with different percentages of gallium (0.5, 1, 2 and 4vt. %) on the glass substrates were deposited by using sol-gel method via spin coating technique at 2500 rpm, and all layers were annealed at 200°C for 1h and then Were examined their electrical, optical and structural properties. Concentration of all solution was 0.1M. The results show that the optimized layer is 0.5% GZO. By examining the transmittance spectrums we find that by doping the transparency of samples were improved and all samples in the visible areas 400-800nm are transparent. The electrical conductivity of all samples has been measured by four-point probe technique. The electrical conductivitys of pure ZnO sample and 0.5% GZO are 910-5 S/cm and 110-4 S/cm respectively. It can be a good choice for optoelectronic applications. Also X-ray diffraction results showed that diffraction peaks of 0.5% GZO sample have a small changes towards lower angles compared to the diffraction peaks of ZnO.

2006 ◽  
Vol 13 (01) ◽  
pp. 13-15 ◽  
Author(s):  
GUANGPENG MA ◽  
JIANRU HAN ◽  
CHANGHONG YANG ◽  
HONGYAN XU ◽  
DONGMEI YANG ◽  
...  

ZnO thin films were prepared on silica glass substrates by a sol–gel spin coating technique. The thickness of the films was about 200 nm. At 370 nm in the ultraviolet region, there is a sharp absorption edge that corresponds to the ZnO intrinsic band gap of 3.30 eV. The structural properties of the films were examined by X-ray diffraction, which demonstrates that the ZnO films were c-axis oriented. From the infrared spectrum, we conclude that ZnO was deposited on silica glass substrates through a high temperature process at 700°C.


2018 ◽  
Vol 273 ◽  
pp. 140-145 ◽  
Author(s):  
Dewi Suriyani Che Halin ◽  
Norsuria Mahmed ◽  
Mohd Arif Anuar Mohd Salleh ◽  
A.N. Mohd Sakeri ◽  
Kamrosni Abdul Razak

Ag/TiO2thin films were prepared via sol-gel spin coating method. Structural, surface morphology and optical properties were investigated with the addition of two different amount of silver (Ag). X-ray diffraction pattern shows the sample with pure TiO2, the only phase presence was brookite TiO2. When the Ag content added into the solution, the phase existed for the samples with TiO2doped 0.5g Ag and TiO2doped 1.0g Ag were anatase TiO2with no peak corresponds to Ag phase. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films were annealed at 450 °C and it shows non-uniform films. The films have a large flaky and cracks film which was attributed to surface tension between the film and the air during the drying process. When the solution of sol was added with Ag content, it shows the porous structure with flaky-crack films. With the increasing of the Ag content from 0.5g to 1.0g, the structure is more porous and it is good for the photocatalytic activity. The UV-Vis spectra shows that the film exhibits a low absorbance which was due to the substrate is inhomogeneously covered by the flaky-crack films.


2012 ◽  
Vol 485 ◽  
pp. 144-148
Author(s):  
Jian Lin Chen ◽  
Yan Jie Ren ◽  
Jian Chen ◽  
Jian Jun He ◽  
Ding Chen

Preferentially oriented Al-doped ZnO thin films with doping concentration of 1, 2, 3, 5 and 10 mol% respectively were prepared on glass substrates via sol-gel route. The crystallinity of films was characterized by X-ray diffraction and the surface morphologies were observed by scanning electron microscopy. The results show that ZnO:Al films at low doping concentration (1, 2 mol%) grow into dense homogenous microstructure. However, as for high doping concentration (3, 5, 10 mol%), Al3+ precipitate in the form of amorphous Al2O3 and ZnO:Al films exhibit heterogeneous nucleation and exceptional growth of the big plate-like crystals at the interface of the amorphous Al2O3 and ZnO:Al matrix.


2003 ◽  
Vol 785 ◽  
Author(s):  
R. Guzman ◽  
M.S. Tomar ◽  
R.E. Melgarejo

ABSTRACTThere is a great deal of interest in CaCu3Ti4O12 system for dielectric applications. We have studied Ca1-xSrxCu3Ti4O12 system for different compositions. The material is synthesized by sol-gel chemical solution route and thin films were deposited by spin coating. Thin films were investigated by x-ray diffraction and Raman spectroscopy for structural properties. These results indicate a solid solution for the compositions x = 0.00 to 0.80. The SEM micrographs shows the uniform films at 800° C, but the dielectric response of Ca1-xSrxCu3Ti4O12 (x = 0.00) shows the dielectric constant value below 200.


2015 ◽  
Vol 819 ◽  
pp. 189-192
Author(s):  
Dewi Suriyani Che Halin ◽  
Ibrahim Abu Talib ◽  
Abdul Razak Daud ◽  
Muhammad Azmi Abd Hamid

Thin films of copper oxide were successively deposited on glass substrates by sol-gel like spin coating for 40 s and annealed in air at different temperatures (200-400°C). Precursor solutions were prepared by dissolving cupric chloride in methanol. Various stabilizers and additives were used to enhance the solubility of cupric chloride and to improve the adhesion between the films and the glass substrates. Glucopone was used as a surfactant to reduce the surface energy. The evolution of oxide coatings under thermal treatment was studied by glancing incidence X-ray diffraction and scanning electron microscopy. Annealing the films in air at 300°C converts the films to CuO. The general appearances of the films were uniform and brownish in color.


Author(s):  
Ayu Uswatu Lissa Sapta Setyadi ◽  
Yofentina Iriani ◽  
Fahru Nurosyid

<p class="AbstractEnglish"><strong>Abstra</strong><strong>ct</strong><strong>:</strong><strong> </strong>Preparation of Barium Titanate thin film (BaTiO3) has been done on Quartz substrate using sol gel method with spin coating technique. A thin film BaTiO3 wase made with a mole variation of 0.4 mol and 0.8 mol at a rotation speed of 3000 rpm. The samples were annealed at 400 ° C with 30 minutes stand-up time and at 900 ° C with 2 hours stand-up time and a heating rate of 5 ° C per minute. Characterization of optical properties samples was performed using UV-Vis spectrometers and characterization of microstructure samples using X-Ray Diffraction (XRD). The particle size was calculated by Scherer's formula. Based on the results of the analysis it was found that mole variation of the solution influenced the absorbance value, intensity, crystality level and BaTiO3 thin film particle size. The greater mole of BaTiO<sub>3</sub> solution the higher then absorbance value. The fewer then number of layers the greater then diffraction peak intensity. More number of layers the greater the level of crystallinity and particle size.</p><p class="KeywordsEngish"> </p><p class="AbstrakIndonesia"><strong>Abstra</strong><strong>k: </strong>Pembuatan lapisan tipis Barium Titanat (BaTiO<sub>3</sub>) telah dilakukan  diatas substrat Quartz menggunakan metode sol gel dengan teknik spin coating. Lapisan tipis BaTiO<sub>3 </sub>dibuat dengan variasi mol  0.4 mol dan  0.8 mol pada kecepatan putar 3000 rpm. Sampel diannealing  pada suhu 400<sup>o</sup>C dengan waktu tahan 30 menit  dan pada suhu 900<sup>o</sup>C dengan waktu tahan 2 jam dan kenaikan suhunya 5<sup>o</sup>C per menit. Karakterisasi sifat optik sampel dilakukan  menggunakan spektrometer UV-Vis dan karakterisasi struktrur mikro sampel menggunakan X-Ray Diffraction (XRD).Ukuran partikel dihitung dengan formula Scherer. Berdasarkan hasil analisis didapat bahwa variasi mol larutan mempengaruhi  mempengaruhi nilai absorbansi, intensitas, tingkat kekristalan dan ukuran partikel lapisan tipis BaTiO<sub>3</sub>. Semakin besar mol larutan BaTiO<sub>3 </sub>maka semakin tinggi nilai absorbansinya. Semakin sedikit jumlah lapisan maka intensitas puncak difraksi semakin besar. Semakin banyak jumlah lapisan maka semakin besar pula tingkat kekristalan dan ukuran partikel<em>. </em></p>


2014 ◽  
Vol 925 ◽  
pp. 278-281 ◽  
Author(s):  
Sharipah Nadzirah ◽  
Uda Hashim ◽  
N. Malihah

Titanium dioxide (TiO2) thin films based interdigitated electrodes (IDEs) have been synthesized using sol-gel method with hydrochloric acid (HCl) as catalyst. The prepared TiO2 solution has been deposited onto silicon dioxide (SiO2) substrates via spin-coating technique. Film was annealed at 500 °C and aluminium (Al) IDEs have been fabricated. Finally the X-ray diffraction (XRD) shows high intensity of both anatase and rutile peaks exist on 10 nm TiO2 thin film. Average crystallite size of the nanoparticles is seen to be 25 nm. UvVisible spectroscopic (UvVis) technique was used for the transmittance spectra characterization of the sample.


2020 ◽  
Vol 43 (1) ◽  
pp. 26-42 ◽  
Author(s):  
Zahra Hajian Karahroudi ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

AbstractThis study presents a preparation of SrFe12O19– SrTiO3 nanocomposite synthesis via the green auto-combustion method. At first, SrFe12O19 nanoparticles were synthesized as a core and then, SrTiO3 nanoparticles were prepared as a shell for it to manufacture SrFe12O19–SrTiO3 nanocomposite. A novel sol-gel auto-combustion green synthesis method has been used with lemon juice as a capping agent. The prepared SrFe12O19–SrTiO3 nanocomposites were characterized by using several techniques to characterize their structural, morphological and magnetic properties. The crystal structures of the nanocomposite were investigated via X-ray diffraction (XRD). The morphology of SrFe12O19– SrTiO3 nanocomposite was studied by using a scanning electron microscope (SEM). The elemental composition of the materials was analyzed by an energy-dispersive X-ray (EDX). Magnetic properties and hysteresis loop of nanopowder were characterized via vibrating sample magnetometer (VSM) in the room temperature. Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed the molecular bands of nanoparticles. Also, the photocatalytic behavior of nanocomposites has been checked by the degradation of azo dyes under irradiation of ultraviolet light.


2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


2002 ◽  
Vol 737 ◽  
Author(s):  
R.E. Melgarejo ◽  
M.S. Tomar ◽  
A. Hidalgo ◽  
R.S. Katiyar

ABSTRACTNd substituted bismuth titanate Bi4-xNdxTi3O12 were synthesized by sol-gel process and thin films were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. Thin films, characterized by X-ray diffraction and Raman spectroscopy, shows complete solid solution up to the composition x < 1. Initial results indicate that the ferroelectric polarization increases with increasing Nd content in the film with 2Pr = 50μC/cm2 for x = 0.46, which may have application in non-volatile ferroelectric memory devices.


Sign in / Sign up

Export Citation Format

Share Document