scholarly journals High Throughput Error Control Using Parallel CRC

VLSI Design ◽  
1994 ◽  
Vol 2 (1) ◽  
pp. 33-50
Author(s):  
Andrzej Sobski ◽  
Alexander Albicki

Redesigning the LFSR (Linear Feedback Shift Register) so that syndrome calculations can be performed in one sweep allows for fast error control in high speed computer networks. The resulting structure forms the basis of the PEDDC (Parallel Encoder, Decoder, Detector, Corrector) which replaces the conventional Serial Encoder, Decoder, Detector, Corrector for generation and utilization of cyclic codes. Since syndromes are calculated in as little as one clock period, information from which the syndrome is calculated can be processed in a parallel stream. In this paper a simple PEDDC is built, its operation is examined in detail, its performance is compared with a serial counterpart, possible variations on the PEDDC structure is given, and further speed enhancement techniques are considered.

Author(s):  
K. Manju Bhargavi

This paper presents the design & implementation of the Linear Feedback Shift Register (LFSR) using the Mentor Graphics tool in 90nm technology. LFSR’s have a wide variety of applications. They are used in pseudo-random variety generation, whitening sequences and pseudo-noise sequences. MOS current-mode logic (MCML) and Dynamic current-mode logic (DYCML) are employed to design an LFSR. MCML is widely used in high-speed applications and these MCML circuits are based on current steering logic. The advantages of the MCML method are that they have high noise immunity due to their differential nature of inputs. The disadvantage of MCML approach is static power dissipation. To overcome these issues of MCML logic, Dynamic CML logic is used. Its advantages include low static power dissipation and high performance. This paper shows the comparison results of CMOS, Dynamic CML and MCML designs in terms of delay, power and transistor count.


Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


Sign in / Sign up

Export Citation Format

Share Document