scholarly journals T Cell Mediated Antibody lnvariance in an Immune Response Against A Bacterial Carbohydrate Antigen Requires CD28/B7–1 Costimulation

2001 ◽  
Vol 8 (3-4) ◽  
pp. 243-257 ◽  
Author(s):  
André Rademaekers ◽  
Eckehart Kölsch ◽  
Christoph Specht

The humoral immune response againstα(1→3)dextran (Dex) in BALB/c mice is characterized by the formation of predominantly IgM antibodies bearing the J558 idiotype. IgG antibodies do not appear in euthymic mice. In athymic animals however, the response proceeds to a vigorous IgG production. In euthymic mice formation of IgG is suppressed by J558 idiotype- specific regulatory T cells recognizing in association with I-Edand in cognate T/B interaction the VH CDR3 derived peptide of the J558 idiotpye. Only B-2 lymphocytes produce IgG whereas B-1 cells do not participate in the production of this Ig class. Using a novel synthetic allα(1→3)-D-gluco configurated tetrasaccharide the Dex-specific B cells can for the first time be analyzed in FACS. In experiments using this newly designed low molecular Dex no signs of B cell apoptosis can be found. This demonstrates a true silencing of persisting Bγ memory cells and supports previous by adoptive transfer experiments. In this suppression an involvement of CD28/B7–1 interaction can be demonstrated which is a necessary costimulatory suppression signal in addition to the cognate TCR/peptide-I-Edinteraction between J558 Id-specific T cells and J558 idiotype beating B cells. This results in an activation of 178–4 Ts cells, leading to an overall suppression of the Dex-specific IgG isotype production on the one hand and on the other hand provides a signal for the survival and clonal expansion of J558 Id-positive B cells.

1999 ◽  
Vol 190 (10) ◽  
pp. 1535-1540 ◽  
Author(s):  
Robert S. Mittler ◽  
Tina S. Bailey ◽  
Kerry Klussman ◽  
Mark D. Trailsmith ◽  
Michael K. Hoffmann

The 4-1BB receptor (CDw137), a member of the tumor necrosis factor receptor superfamily, has been shown to costimulate the activation of T cells. Here we show that anti–mouse 4-1BB monoclonal antibodies (mAbs) inhibit thymus-dependent antibody production by B cells. Injection of anti–4-1BB mAbs into mice being immunized with cellular or soluble protein antigens induced long-term anergy of antigen-specific T cells. The immune response to the type II T cell–independent antigen trinintrophenol-conjugated Ficoll, however, was not suppressed. Inhibition of humoral immunity occurred only when anti–4-1BB mAb was given within 1 wk after immunization. Anti–4-1BB inhibition was observed in mice lacking functional CD8+ T cells, indicating that CD8+ T cells were not required for the induction of anergy. Analysis of the requirements for the anti–4-1BB–mediated inhibition of humoral immunity revealed that suppression could not be adoptively transferred with T cells from anti–4-1BB–treated mice. Transfer of BALB/c splenic T cells from sheep red blood cell (SRBC)-immunized and anti–4-1BB–treated mice together with normal BALB/c B cells into C.B-17 severe combined immunodeficient mice failed to generate an anti-SRBC response. However, B cells from the SRBC-immunized, anti–4-1BB–treated BALB/c mice, together with normal naive T cells, exhibited a normal humoral immune response against SRBC after transfer, demonstrating that SRBC-specific B cells were left unaffected by anti–4-1BB mAbs.


1994 ◽  
Vol 180 (6) ◽  
pp. 2347-2351 ◽  
Author(s):  
W Held ◽  
G A Waanders ◽  
H Acha-Orbea ◽  
H R MacDonald

Mouse mammary tumor virus (MMTV) encodes a superantigen (SAg) that promotes stable infection and virus transmission. Upon subcutaneous MMTV injection, infected B cells present SAg to SAg-reactive T cells leading to a strong local immune response in the draining lymph node (LN) that peaks after 6 d. We have used the reverse transcriptase inhibitor 3'-azido-3'-deoxythymidine (AZT) to dissect in more detail the mechanism of SAg-dependent enhancement of MMTV infection in this system. Our data show that no detectable B or T cell response to SAg occurs in AZT pretreated mice. However, if AZT treatment is delayed 1-2 d after MMTV injection, a normal SAg-dependent local immune response is observed on day 6. Quantitation of viral DNA in draining LN of these infected mice indicates that a 4,000-fold increase in the absolute numbers of infected cells occurs between days 2 and 6 despite the presence of AZT. Furthermore MMTV DNA was found preferentially in surface IgG+ B cells of infected mice and was not detectable in SAg-reactive T cells. Collectively our data suggest that MMTV infection occurs preferentially in B cells without SAg involvement and is completed 1-2 d after virus challenge. Subsequent amplification of MMTV infection between days 2 and 6 requires SAg expression and occurs in the absence of any further requirement for reverse transcription. We therefore conclude that clonal expansion of infected B cells via cognate interaction with SAg-reactive T cells is the predominant mechanism for increasing the level of MMTV infection. Since infected B cells display a memory (surface IgG+) phenotype, both clonal expansion and possibly longevity of the virus carrier cells may contribute to stable MMTV infection.


1980 ◽  
Vol 151 (3) ◽  
pp. 667-680 ◽  
Author(s):  
R H Zubler ◽  
H Cantor ◽  
B Benacerraf ◽  
R N Germain

Feedback regulation of the primary humoral immune response to sheep erythrocytes (SRBC) was studied in vitro. Whole spleen cells or spleen cell subpopulations were incubated with antigen for 4 d under Mishell-Dutton conditions (education) and the surviving cells tested for regulatory activity in fresh anti-SRBC spleen cell cultures assayed by measuring plaque-forming cells on day 4. The data indicate that (a) whole spleen cells educated with SRBC exert potent antigen-specific suppression in the assay culture, (b) surface Ig- (sIg-) cells (T cells) prepared by either nylon-wool separation or fractionation on rabbit anti-mouse-Ig-coated polystyrene Petri dishes failed to generate suppressive activity when educated alone, in 2-mercaptoethanol, or in the presence of additional macrophages, (c) surface Ig (sIg+) (B) cells educated alone also failed to generate suppressor cells, and (d) mixing sIg- (T) and sIg+, Lyt 123- (B) cells reconstituted the ability to induce suppressor cells under these conditions. The antigen-primed cell actually required to transfer suppression was also characterized by separating cells using anti-Ig coated dishes, by fluorescence-activated cell sorting and by anti-Lyt treatment. All these methods clearly identified sIg+ (B) and not sIg+ (T) cells as the important educated cells. It is concluded that under our conditions, T cell-dependent B cells triggered by antigen during primary in vitro cultures cause potent specific feedback suppression of humoral responses. Possible mechanisms for this suppression, including antigen blockade or anti-idiotypic responses, are discussed.


2021 ◽  
Author(s):  
S Jake Gonzales ◽  
Kathleen N Clarke ◽  
Gayani Batugedara ◽  
Ashley E Braddom ◽  
Rolando Garza ◽  
...  

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against P. falciparum develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, merozoite surface protein 1 (MSP1), in individuals from a region in Uganda with high P. falciparum transmission. Our results showed that MSP1-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ MSP1-specific classical MBCs. In contrast, anti-MSP1 plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against MSP1 and whole merozoites, with broadening of the response against non-3D7 strains in adults. The antibodies encoded by MSP1-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable MSP1 protein. Proteomics analysis of MSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to MSP1-specific MBCs, anti-MSP1 IgGs had relatively high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the MSP1-specific humoral immune response with cumulative P. falciparum exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of MSP1 variants by the plasma IgG repertoire.


2021 ◽  
Vol 13 ◽  
pp. 117957352110601
Author(s):  
Christoph Grothe ◽  
Falk Steffen ◽  
Stefan Bittner

Background Patients with multiple sclerosis (MS) receiving immunomodulatory drugs were excluded from clinical trials on COVID-19 vaccines. Therefore, data regarding the efficacy of COVID-19 vaccines to induce humoral immunity in MS patients treated with B- and T-cell depleting agents is urgently warranted. Cladribine tablets are a high-efficacy disease-modifying treatment that exerts its therapeutic effect via sustained but transient lymphocyte depletion. Aim We report humoral responses in a German cohort of MS patients treated with cladribine tablets. Methods This retrospective analysis included patients ≥18 years who were treated with cladribine tablets for relapsing MS in the first or second year and were fully vaccinated against COVID-19. Two weeks after the second vaccination at the earliest, blood samples were obtained for the assessment of anti-SARS-CoV-2 IgG antibodies, lymphocyte counts, B-cells, CD4+ T-cells, and CD8+ T-cells. Anti-SARS-CoV-2 IgG antibodies were quantified with the LIAISON® SARS-CoV-2 TrimericS IgG assay. Positivity was defined at a cutoff value of 33.8 BAU/mL. Results In total, 38 patients (73.7% female, aged 23–66 years) were included in the analysis. Ten patients (26.3%) were treatment-naïve before initiating treatment with cladribine tablets. Most patients (84.2%) received mRNA vaccines. The time between the last dose of cladribine tablets and vaccination ranged between 2 and 96 weeks. Six patients (15.8%) were vaccinated within 4 weeks of their last cladribine dose. All patients achieved positive anti-SARS-CoV-2 IgG antibody levels. Humoral immune response was independent of age, time of vaccination in relation to the last cladribine dose, lymphocyte counts as well as B- and T-cell counts. Conclusions Treatment with cladribine tablets did not impair humoral response to COVID-19 vaccination. Time since last cladribine dose, age, prior therapy, lymphocyte count as well as B- and T-cell counts had no effect on seropositivity of anti-SARS-CoV-2 IgG antibodies.


2021 ◽  
Author(s):  
Chen Chen ◽  
Chengguang Zhang ◽  
Haoqi Li ◽  
Zongmei Wang ◽  
Yueming Yuan ◽  
...  

Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expression of pattern recognition receptors (PRRs) also causes diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not been revealed yet. Based on TLR4-deficient ( TLR4 -/- ) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type-2 dendritic cells (CD8α - CD11b + cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of Tfh cells promotes the proliferation of germinal centre (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4 deficiency ( TLR4 -/- ) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG, compared with that occurred in wild-type (WT) mice. As a consequence, TLR4 -/- mice exhibited higher mortality than WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α + CD11b - ), a subset of cDCs known to induce CD4 + T cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.


Author(s):  
Sudhir Gupta ◽  
Houfen Su ◽  
Sudhanshu Agrawal

<b><i>Introduction:</i></b> In the trials of corona virus vaccines, detailed analyses of subsets of lymphocytes were not carried out. We present perhaps the most comprehensive immunological analysis of 29 subsets of B and T cells in 2 healthy subjects receiving 2 doses of the Pfizer SARS-CoV-2 (COVID-19) vaccine. <b><i>Methods:</i></b> Analyses were performed prior to vaccination, 3 weeks following the 1st dose, and 4 weeks following the 2nd dose. Total, naïve (T<sub>N</sub>), and different memory and effector subsets (T<sub>CM</sub>, T<sub>EM</sub>, and T<sub>EMRA</sub>) of CD4+ and CD8+ T cells; SARS-CoV-2 spike protein-specific tetramer+, and cytotoxic CD8+ T; subsets of T follicular cells (T<sub>FH</sub>, T<sub>FH</sub>1, T<sub>FH</sub>2, T<sub>FH</sub>1/T<sub>FH</sub>17, and T<sub>FH</sub>17); B-cell subsets (mature B cells, naive B cells, transitional B cells, marginal zone B cells, class-switched memory B cells, germinal center B cells, and CD21<sup>low</sup> B cells), and plasmablasts; and regulatory lymphocytes (CD4+ Treg, CD8+ Treg, Breg, and T<sub>FR</sub> cells) were evaluated with specific monoclonal antibodies by flow cytometry. <b><i>Results:</i></b> A lack of COVID-19 IgG antibodies after the 1st dose in one of 2 subjects was associated with increased regulatory lymphocytes and decreased plasmablasts. Seroconversion after the 2nd dose in this subject was associated with decreased T<sub>FR</sub> cells and increased plasmablasts. In both subjects, CD4 T<sub>EM</sub> and CD8 T<sub>CM</sub> were markedly increased following the 2nd dose. T<sub>FH</sub>1 and regulatory lymphocytes were increased (except Breg) following the 1st dose. A striking increase in SARS-CoV-2-specific CD8+ T cells was observed following the 2nd dose. <b><i>Conclusion:</i></b> Our data support the need for 2nd dose of vaccine to induce strong SARS-CoV-2 CD8 T-cell specific response and generation of memory subsets of CD4+ and CD8+ T cells. Regulatory lymphocytes appear to play a role in the magnitude of response.


2000 ◽  
Vol 192 (7) ◽  
pp. 953-964 ◽  
Author(s):  
Richard K.G. Do ◽  
Eunice Hatada ◽  
Hayyoung Lee ◽  
Michelle R. Tourigny ◽  
David Hilbert ◽  
...  

B lymphocyte stimulator (BLyS) is a newly identified monocyte-specific TNF family cytokine. It has been implicated in the development of autoimmunity, and functions as a potent costimulator with antiimmunoglobulin M in B cell proliferation in vitro. Here we demonstrate that BLyS prominently enhances the humoral responses to both T cell–independent and T cell–dependent antigens, primarily by attenuation of apoptosis as evidenced by the prolonged survival of antigen-activated B cells in vivo and in vitro. BLyS acts on primary splenic B cells autonomously, and directly cooperates with CD40 ligand (CD40L) in B cell activation in vitro by protecting replicating B cells from apoptosis. Moreover, although BLyS alone cannot activate the cell cycle, it is sufficient to prolong the survival of naive resting B cells in vitro. Attenuation of apoptosis by BLyS correlates with changes in the ratios between Bcl-2 family proteins in favor of cell survival, predominantly by reducing the proapoptotic Bak and increasing its prosurvival partners, Bcl-2 and Bcl-xL. In either resting or CD40L-activated B cells, the NF-κB transcription factors RelB and p50 are specifically activated, suggesting that they may mediate BLyS signals for B cell survival. Together, these results provide direct evidence for BLyS enhancement of both T cell–independent and T cell–dependent humoral immune responses, and imply a role for BLyS in the conservation of the B cell repertoire. The ability of BLyS to increase B cell survival indiscriminately, at either a resting or activated state, and to cooperate with CD40L, further suggests that attenuation of apoptosis underlies BLyS enhancement of polyclonal autoimmunity as well as the physiologic humoral immune response.


Sign in / Sign up

Export Citation Format

Share Document