scholarly journals Chaos Control in Mechanical Systems

2006 ◽  
Vol 13 (4-5) ◽  
pp. 301-314 ◽  
Author(s):  
Marcelo A. Savi ◽  
Francisco Heitor I. Pereira-Pinto ◽  
Armando M. Ferreira

Chaos has an intrinsically richness related to its structure and, because of that, there are benefits for a natural system of adopting chaotic regimes with their wide range of potential behaviors. Under this condition, the system may quickly react to some new situation, changing conditions and their response. Therefore, chaos and many regulatory mechanisms control the dynamics of living systems, conferring a great flexibility to the system. Inspired by nature, the idea that chaotic behavior may be controlled by small perturbations of some physical parameter is making this kind of behavior to be desirable in different applications. Mechanical systems constitute a class of system where it is possible to exploit these ideas. Chaos control usually involves two steps. In the first, unstable periodic orbits (UPOs) that are embedded in the chaotic set are identified. After that, a control technique is employed in order to stabilize a desirable orbit. This contribution employs the close-return method to identify UPOs and a semi-continuous control method, which is built up on the OGY method, to stabilize some desirable UPO. As an application to a mechanical system, a nonlinear pendulum is considered and, based on parameters obtained from an experimental setup, analyses are carried out. Signals are generated by numerical integration of the mathematical model and two different situations are treated. Firstly, it is assumed that all state variables are available. After that, the analysis is done from scalar time series and therefore, it is important to evaluate the effect of state space reconstruction. Delay coordinates method and extended state observers are employed with this aim. Results show situations where these techniques may be used to control chaos in mechanical systems.

2005 ◽  
Vol 15 (12) ◽  
pp. 4051-4063 ◽  
Author(s):  
FRANCISCO HEITOR I. PEREIRA-PINTO ◽  
ARMANDO M. FERREIRA ◽  
MARCELO A. SAVI

Chaos control may be understood as the use of tiny perturbations for the stabilization of unstable periodic orbits embedded in a chaotic attractor. Since chaos may occur in many natural processes, the idea that chaotic behavior may be controlled by small perturbations of some physical parameter allows this kind of behavior to be desirable in different applications. In general, it is not necessary to have a mathematical model to achieve the control goal since all control parameters may be resolved from time series analysis. Therefore, state space reconstruction is an important task related to chaos control. This contribution analyzes chaos control performed using a semi-continuous method based on OGY approach and proposes the use of extended state observers in order to perform state space reconstruction. The use of extended state observers allows a direct application of the control method. Comparing with the delay coordinates method, extended state observers avoids the calculation of parametric changes related to delayed Poincaré sections that influence the system dynamics. The proposed procedure is applied in the control of chaos in a nonlinear pendulum, showing that it may be used to control chaos in mechanical systems.


2002 ◽  
Vol 12 (05) ◽  
pp. 1057-1065 ◽  
Author(s):  
YANXING SONG ◽  
XINGHUO YU ◽  
GUANRONG CHEN ◽  
JIAN-XIN XU ◽  
YU-PING TIAN

In this paper, a time-delayed chaos control method based on repetitive learning is proposed. A general repetitive learning control structure based on the invariant manifold of the chaotic system is given. The integration of the repetitive learning control principle and the time-delayed chaos control technique enables adaptive learning of appropriate control actions from learning cycles. In contrast to the conventional repetitive learning control, no exact knowledge (analytic representation) of the target unstable periodic orbits is needed, except for the time delay constant, which can be identified via either experiments or adaptive learning. The controller effectively stabilizes the states of the continuous-time chaos on desired unstable periodic orbits. Simulations on the Duffing and Lorenz chaotic systems are provided to verify the design and analysis.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
A. Al-khedhairi ◽  
S. S. Askar ◽  
A. E. Matouk ◽  
A. Elsadany ◽  
M. Ghazel

This paper demonstrates dynamics, chaos control, and synchronization in Samardzija-Greller population model with fractional order between zero and two. The fractional-order case is shown to exhibit rich variety of nonlinear dynamics. Lyapunov exponents are calculated to confirm the existence of wide range of chaotic dynamics in this system. Chaos control in this model is achieved via a novel linear control technique with the fractional order lying in (1, 2). Moreover, a linear feedback control method is used to control the fractional-order model to its steady states when 0<α<2. In addition, the obtained results illustrate the role of fractional parameter on controlling chaos in this model. Furthermore, nonlinear feedback synchronization scheme is also employed to illustrate that the fractional parameter has a stabilizing role on the synchronization process in this system. The analytical results are confirmed by numerical simulations.


1994 ◽  
Vol 04 (06) ◽  
pp. 1703-1706 ◽  
Author(s):  
P. CELKA

We have built an experimental setup to apply Pyragas’s [1992, 1993] control method in order to stabilize unstable periodic orbits (UPO) in Chua’s circuit. We have been able to control low period UPO embedded in the double scroll attractor. However, experimental results show that the control method is useful under some restrictions we will discuss.


2012 ◽  
Vol 22 (05) ◽  
pp. 1250111 ◽  
Author(s):  
ALINE S. DE PAULA ◽  
MARCELO A. SAVI ◽  
MARIAN WIERCIGROCH ◽  
EKATERINA PAVLOVSKAIA

In this paper, we apply chaos control methods to modify bifurcations in a parametric pendulum-shaker system. Specifically, the extended time-delayed feedback control method is employed to maintain stable rotational solutions of the system avoiding period doubling bifurcation and bifurcation to chaos. First, the classical chaos control is realized, where some unstable periodic orbits embedded in chaotic attractor are stabilized. Then period doubling bifurcation is prevented in order to extend the frequency range where a period-1 rotating orbit is observed. Finally, bifurcation to chaos is avoided and a stable rotating solution is obtained. In all cases, the continuous method is used for successive control. The bifurcation control method proposed here allows the system to maintain the desired rotational solutions over an extended range of excitation frequency and amplitude.


Author(s):  
Qamar Din ◽  
A. A. Elsadany ◽  
Samia Ibrahim

AbstractThis work is related to dynamics of a second-order rational difference equation. We investigate the parametric conditions for local asymptotic stability of equilibria. Center manifold theorem and bifurcation theory are implemented to discuss the parametric conditions for existence and direction of period-doubling bifurcation and pitchfork bifurcation at trivial equilibrium point. Moreover, the parametric conditions for existence and direction of Neimark–Sacker bifurcation at positive steady state are investigated with the help of bifurcation theory. The chaos control in the system is discussed through implementation of OGY feedback control method. In particular, we stabilize the chaotic orbits at an unstable fixed point by using OGY chaotic control. Finally, numerical simulations are provided to illustrate theoretical results. The computation of the maximum Lyapunov exponents confirms the presence of chaotic behavior in the system.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Di-Yi Chen ◽  
Wei-Li Zhao ◽  
Xiao-Yi Ma ◽  
Run-Fan Zhang

This paper investigates the control and synchronization of the shunted nonlinear resistive-capacitive-inductance junction (RCLSJ) model under the condition of noise disturbance with only one single controller. Based on the sliding mode control method, the controller is designed to eliminate the chaotic behavior of Josephson junctions and realize the achievement of global asymptotic synchronization of coupled system. Numerical simulation results are presented to demonstrate the validity of the proposed method. The approach is simple and easy to implement and provides reference for chaos control and synchronization in relevant systems.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950044 ◽  
Author(s):  
Muhammad Aqib Abbasi ◽  
Qamar Din

The interaction between predators and preys exhibits more complicated behavior under the influence of crowding effects. By taking into account the crowding effects, the qualitative behavior of a prey–predator model is investigated. Particularly, we examine the boundedness as well as existence and uniqueness of positive steady-state and stability analysis of the unique positive steady-state. Moreover, it is also proved that the system undergoes Hopf bifurcation and flip bifurcation with the help of bifurcation theory. Moreover, a chaos control technique is proposed for controlling chaos under the influence of bifurcations. Finally, numerical simulations are provided to illustrate the theoretical results. These results of numerical simulations demonstrate chaotic long-term behavior over a broad range of parameters. The presence of chaotic behavior in the model is confirmed by computing maximum Lyapunov exponents.


2011 ◽  
Vol 217-218 ◽  
pp. 33-38 ◽  
Author(s):  
Alessandra Bonato Altran ◽  
Fábio Roverto Chavarette ◽  
Carlos Roberto Minussi ◽  
Nelson José Peruzzi ◽  
Mara Lúcia Marthins Lopes ◽  
...  

This paper presents the linear optimal control technique for reducing the chaotic movement of the micro-electro-mechanical Comb Drive system to a small periodic orbit. We analyze the non-linear dynamics in a micro-electro-mechanical Comb Drive and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This technique is applied in analyzes the nonlinear dynamics in an MEMS Comb drive. The simulation results show the identification by linear optimal control is very effective.


Mathematics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 96
Author(s):  
Kotb B. Tawfiq ◽  
Mohamed N. Ibrahim ◽  
Hegazy Rezk ◽  
Elwy E. El-kholy ◽  
Peter Sergeant

The interest in motor drive systems with a number of phases greater than three has increased, mainly in high-power industrial fields due to their advantages compared with three-phase drive systems. In this paper, comprehensive mathematical modeling of a five-phase matrix converter (MC) is introduced. Besides that, the direct and indirect space vector modulation (SVM) control methods are compared and analyzed. Furthermore, a mathematical model for the MC with the transformation between the indirect and direct topology is constructed. The indirect technique is used to control the five-phase MC with minimum switching losses. In this technique, SVM deals with a five-phase MC as a virtual two-stage converter with a virtual DC link (i.e., rectifier and inverter stages). The voltage gain is limited to a value of 0.79. Moreover, to analyze the effectiveness of the control technique and the advantages of the MC, a static R-L load is employed. However, the load can also be an industrial load, such as hospital pumping or vehicular applications. The presented analysis proves that the MC gives a wide range of output frequencies, and it has the ability to control the input displacement factor and the output voltage magnitude. In addition, the absence of the massive DC link capacitors is an essential feature for the MC, resulting in increased reliability and a reduced size converter. Eventually, an experimental validation is conducted on a static load to validate the presented model and the control method. It is observed that good matching between the simulation and the experimental results is achieved.


Sign in / Sign up

Export Citation Format

Share Document