scholarly journals Overexpression of Gastrin-Releasing Peptide Receptors in Tumor-Associated Blood Vessels of Human Ovarian Neoplasms

2007 ◽  
Vol 29 (5) ◽  
pp. 421-433 ◽  
Author(s):  
Achim Fleischmann ◽  
Beatrice Waser ◽  
Jean Claude Reubi

Background: Peptide receptors, overexpressed in specific cancers, represent new diagnostic and therapeutic targets. In this study, receptors for the gastrin-releasing peptide (GRP), and other members of the bombesin-family of peptides, were evaluated in ovarian neoplasms. Methods: 75 primary, secondary and metastatic ovarian tumors were investigated for their bombesin-receptor subtype expression, incidence, localization and density using in vitro autoradiography on tissue sections with the universal radioligand 125I-[D-Tyr6, ß-Ala11, Phe13, Nle14]-bombesin(6-14) and the GRP-receptor subtype-preferring 125I-[Tyr4]-bombesin. Results: GRP-receptors were detected in 42/61 primary ovarian tumors; other bombesin-receptor subtypes (BB1, bb3) were rarely present (3/61). Two different tissue compartments expressed GRP-receptors: the tumoral vasculature was the predominant site of GRP-receptor expression (38/61), whereas neoplastic cells more rarely expressed GRP-receptors (14/61). GRP-receptor positive vessels were present in the various classes of ovarian tumors; generally, malignant tumors had a higher incidence of GRP-receptor positive vessels compared to their benign counterparts. The prevalence of such vessels was particularly high in ovarian carcinomas (16/19) and their metastases (5/5). The GRP-receptors were expressed in high density in the muscular vessel wall. Normal ovary (n=10) lacked GRP-receptors. Conclusions: The large amounts of GRP-receptors in ovarian tumor vessels suggest a role in tumoral vasculature and possibly angiogenesis. Further, these vessels might be targeted in vivo with bombesin analogs for diagnosis or for therapy.

1993 ◽  
Vol 265 (4) ◽  
pp. C869-C876 ◽  
Author(s):  
K. Kusano ◽  
H. Gainer ◽  
J. F. Battey ◽  
Z. Fathi ◽  
E. Wada

BALB/c 3T3 cells do not normally express receptors for bombesin-like peptides [bombesin (Bn), gastrin-releasing peptide (GRP), and neuromedin B (NmB)]. Transfection of BALB/c 3T3 cells with complementary DNA-encoding GRP receptors or NmB receptors leads to stable expression of functional GRP receptors (GRP Rt) or NmB receptors (NmB Rt), respectively, which are coupled to cell membrane ion channels. Whole cell current analysis using patch electrodes shows that the activation of these newly expressed receptors induces cation conductance increases, most frequently a Ca(2+)-activated plasma membrane K+ conductance. The dose-response (peak-current) relations of both transfected receptor subtypes were sigmoidal and exhibited threshold activation concentration in the picomole range and the saturation of responses to higher concentrations than 10(-8) M. The GRP Rt responded about equally to GRP, NmB, and Bn when compared at equimolar levels, despite their known difference in binding affinity for the three peptides (GRP, Bn > NmB). In contrast, for the NmB Rt, the NmB was more potent than GRP or Bn. Among four GRP/Bn-receptor antagonists tested, the [D-Phe6]Bn(6-13) ethyl ester suppressed GRP Rt responses at low concentrations (10(-7) M). N-acetyl-GRP-(20-26) amide, [Leu13-psi(CH2NH)-Leu14]Bn, and [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P also blocked GRP Rt responses but at higher concentrations (10(-5) M). However, at these concentrations, these four antagonists had little effect on NmB Rt responses, thereby showing a specificity of these antagonists for the GRP receptors.


1992 ◽  
Vol 263 (4) ◽  
pp. E712-E717
Author(s):  
J. Pinski ◽  
T. Yano ◽  
K. Groot ◽  
R. Z. Cai ◽  
S. Radulovic ◽  
...  

Four new and specific pseudononapeptide bombesin/gastrin-releasing peptide (GRP) receptor antagonists, containing the D-forms of Trp or Trp analogue (Tpi) at position 6, were studied for their effects on the endocrine pancreas and GRP-(14-27)-induced gastrin release in pentobarbital-anesthetized rats. One of the analogues, D-Tpi6,Leu13-psi (CH2NH)Leu14-bombesin-(6-14) (RC-3095), was injected into the lateral brain ventricle just preceding intracerebroventricular administration of GRP-(14-27) to evaluate its antagonistic effect on GRP-induced serum growth hormone (GH) suppression. Analogues RC-3095, D-Trp6,Leu13-psi (CH2NH)Leu14-bombesin-(6-14) (RC-3125), and D-Trp6,Leu13-psi (CH2NH)Phe14-bombesin-(6-14) (RC-3420), but not D-Tpi6,Leu13-psi (CH2NH)Phe14-bombesin-(6-14) (RC-3105), significantly (P < 0.01) inhibited GRP-(14-27)-stimulated serum gastrin secretion. Analogues RC-3095, RC-3420, and RC-3105, but not RC-3125, demonstrated significant (P < 0.05) antagonistic activities on GRP-(14-27)-stimulated plasma glucagon secretion. Intracerebroventricular injection of RC-3095 (10 micrograms) immediately before GRP-(14-27) (1 microgram) completely prevented the GRP-(14-27)-induced serum GH suppression. These results indicate that 1) marked differences exist in the ability of these analogues to antagonize GRP-(14-27)-induced gastrin or glucagon release, suggesting the existence of different bombesin/GRP receptor subtypes, and 2) the central effect of bombesin/GRP on GH release from the pituitary is probably mediated through specific bombesin/GRP receptors.


2009 ◽  
Vol 16 (2) ◽  
pp. 623-633 ◽  
Author(s):  
Achim Fleischmann ◽  
Beatrice Waser ◽  
Jean Claude Reubi

Tumoral gastrin-releasing peptide (GRP) receptors are potential targets for diagnosis and therapy using radiolabeled or cytotoxic GRP analogs. GRP-receptor overexpression has been detected in endocrine-related cancer cells and, more recently, also in the vascular bed of selected tumors. More information on vascular GRP-receptors in cancer is required to asses their potential for vascular targeting applications. Therefore, frequent human cancers (n=368) were analyzed using in vitro GRP-receptor autoradiography on tissue sections with the 125I-[Tyr4]-bombesin radioligand and/or the universal radioligand 125I-[d-Tyr6, β-Ala11, Phe13, Nle14]-bombesin(6–14). GRP-receptor expressing vessels were evaluated in each tumor group for prevalence, quantity (vascular score), and GRP-receptor density. Prevalence of vascular GRP-receptors was variable, ranging from 12% (prostate cancer) to 92% (urinary tract cancer). Different tumor types within a given site had divergent prevalence of vascular GRP-receptors (e.g. lung: small cell cancer: 0%; adenocarcinoma: 59%; squamous carcinoma: 83%). Also the vascular score varied widely, with the highest score in urinary tract cancer (1.69), moderate scores in lung (0.91), colon (0.88), kidney (0.84), and biliary tract (0.69) cancers and low scores in breast (0.39) and prostate (0.14) cancers. Vascular GRP-receptors were expressed in the muscular vessel wall in moderate to high densities. Normal non-neoplastic control tissues from these organs lacked vascular GRP-receptors. In conclusion, tumoral vessels in all evaluated sites express GRP-receptors, suggesting a major biological function of GRP-receptors in neovasculature. Vascular GRP-receptor expression varies between the tumor types indicating tumor-specific mechanisms in their regulation. Urinary tract cancers express vascular GRP-receptors so abundantly, that they are promising candidates for vascular targeting applications.


2014 ◽  
Vol 85 (1) ◽  
pp. 4-14 ◽  
Author(s):  
Leonida Fusani ◽  
Manfred Gahr

Previous autoradiography studies illustrated that several areas of the avian brain can bind the pineal hormone melatonin. In birds, there are three melatonin receptor (MelR) subtypes: MelIa, MelIb and MelIc. To date, their brain distribution has not been studied in any passerine bird. Therefore, we investigated mRNA distribution of MelR subtypes in adjacent sections of the brain of two songbirds, the blackcap and the zebra finch, in parallel with that of 2-[125I]-iodomelatonin (IMEL) binding sites in the same brains. The general pattern of receptor expression shown by in situ hybridization of species-specific probes matched well with that of IMEL binding. However, the expression of the three subtypes was area specific with similar patterns in the two species. Some brain areas expressed only one receptor subtype, most brain regions co-expressed either MelIa with MelIb or MelIa with MelIc, whereas few areas expressed MelIb and MelIc or all three receptor subtypes. Since many sensory areas, most thalamic areas and subareas of the neopallium, a cortex analogue, express MelR, it is likely that most sensory motor integration functions are melatonin sensitive. Further, the area-specific expression patterns suggest that the regulatory role of melatonin differs among different brain areas. Since subareas of well-defined neural circuits, such as the visual system or the song control system, are equipped with different receptor types, we hypothesize a diversity of functions for melatonin in the control of sensory integration and behavior.


2008 ◽  
Vol 295 (6) ◽  
pp. C1633-C1646 ◽  
Author(s):  
Gary E. Striker ◽  
Francoiçe Praddaude ◽  
Oscar Alcazar ◽  
Scott W. Cousins ◽  
Maria E. Marin-Castaño

The early stage of age-related macular degeneration (AMD) is characterized by the formation of subretinal pigment epithelium (RPE) deposits as a result of the dysregulation in the turnover of extracellular matrix (ECM) molecules. However, the mechanism involved remains unclear. Hypertension (HTN) is an important risk factor for AMD, and angiotensin II (ANG II) is the most important hormone associated with HTN. However, the relevance of ANG II receptors and ANG II effects on RPE have not been investigated yet. Therefore, the expression and regulation of ANG II receptors as well as the ECM turnover were studied in human RPE. ANG II receptors were expressed and upregulated by ANG II in human RPE. This regulation resulted in functional receptor expression, since an increase in intracellular concentration of calcium was observed upon ANG II stimulation. ANG II also increased matrix metalloproteinase (MMP)-2 activity and MMP-14 at the mRNA and protein levels as well as type IV collagen degradation. These ANG II effects were abolished in the presence of the ANG II receptor subtype 1 (AT1) receptor antagonist candesartan. In contrast, ANG II decreased type IV collagen via both AT1 and AT2 receptors, suggesting a synergistic effect of the two receptor subtypes. In conclusion, we have confirmed the presence of ANG II receptors in human RPE and their regulation by ANG II as well as the regulation of ECM molecules via ANG II receptors. Our data support the hypothesis that ANG II may exert biological function in RPE through ANG II receptors and that ANG II may cause dysregulation of molecules that play a major role in the turnover of ECM in RPE basement membrane and Bruch's membrane, suggesting a pathogenic mechanism to explain the link between HTN and AMD.


2001 ◽  
Vol 281 (1) ◽  
pp. F123-F132 ◽  
Author(s):  
Rania Nasrallah ◽  
Odette Laneuville ◽  
Shawn Ferguson ◽  
Richard L. Hébert

Our present study has investigated the effect of cyclooxygenase-2 (COX-2) inhibition on prostaglandin E2 (PGE2) receptor expression in M-1 cortical collecting duct cells and measured their response to PGE2. Using a semiquantitative titration analysis method, we show that following the addition of the COX-2-specific inhibitor NS-398, E-prostanoid receptor subtype (EP3 and EP4) mRNA expression was found to increase threefold each vs. the vehicle-treated control. We also observed that EP1but not EP2 is expressed in M-1 cells and EP2levels are not induced by NS-398. To determine the status of the PGE2 response on exposure to NS-398, we measured cAMP levels in cells after stimulation with varying concentrations of PGE2, then pretreated the cells with 10 μM NS-398 before PGE2 exposure and found a significant rise in the stimulatory effect of PGE2 on cAMP production. Finally, Western blot analysis of the levels of the EP4 receptor protein in control vs. NS-398-treated cells revealed an induction in protein levels in these cells, correlating with the induction in EP4 mRNA. We conclude that NS-398 upregulates the expression of EP3 and EP4 mRNA in M-1 cells. Also, EP4 protein levels are increased, resulting in an increased stimulation of cAMP production by PGE2.


Sign in / Sign up

Export Citation Format

Share Document