Receptor-activated currents in mouse fibroblasts expressing transfected bombesin receptor subtype cDNAs

1993 ◽  
Vol 265 (4) ◽  
pp. C869-C876 ◽  
Author(s):  
K. Kusano ◽  
H. Gainer ◽  
J. F. Battey ◽  
Z. Fathi ◽  
E. Wada

BALB/c 3T3 cells do not normally express receptors for bombesin-like peptides [bombesin (Bn), gastrin-releasing peptide (GRP), and neuromedin B (NmB)]. Transfection of BALB/c 3T3 cells with complementary DNA-encoding GRP receptors or NmB receptors leads to stable expression of functional GRP receptors (GRP Rt) or NmB receptors (NmB Rt), respectively, which are coupled to cell membrane ion channels. Whole cell current analysis using patch electrodes shows that the activation of these newly expressed receptors induces cation conductance increases, most frequently a Ca(2+)-activated plasma membrane K+ conductance. The dose-response (peak-current) relations of both transfected receptor subtypes were sigmoidal and exhibited threshold activation concentration in the picomole range and the saturation of responses to higher concentrations than 10(-8) M. The GRP Rt responded about equally to GRP, NmB, and Bn when compared at equimolar levels, despite their known difference in binding affinity for the three peptides (GRP, Bn > NmB). In contrast, for the NmB Rt, the NmB was more potent than GRP or Bn. Among four GRP/Bn-receptor antagonists tested, the [D-Phe6]Bn(6-13) ethyl ester suppressed GRP Rt responses at low concentrations (10(-7) M). N-acetyl-GRP-(20-26) amide, [Leu13-psi(CH2NH)-Leu14]Bn, and [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P also blocked GRP Rt responses but at higher concentrations (10(-5) M). However, at these concentrations, these four antagonists had little effect on NmB Rt responses, thereby showing a specificity of these antagonists for the GRP receptors.

2007 ◽  
Vol 29 (5) ◽  
pp. 421-433 ◽  
Author(s):  
Achim Fleischmann ◽  
Beatrice Waser ◽  
Jean Claude Reubi

Background: Peptide receptors, overexpressed in specific cancers, represent new diagnostic and therapeutic targets. In this study, receptors for the gastrin-releasing peptide (GRP), and other members of the bombesin-family of peptides, were evaluated in ovarian neoplasms. Methods: 75 primary, secondary and metastatic ovarian tumors were investigated for their bombesin-receptor subtype expression, incidence, localization and density using in vitro autoradiography on tissue sections with the universal radioligand 125I-[D-Tyr6, ß-Ala11, Phe13, Nle14]-bombesin(6-14) and the GRP-receptor subtype-preferring 125I-[Tyr4]-bombesin. Results: GRP-receptors were detected in 42/61 primary ovarian tumors; other bombesin-receptor subtypes (BB1, bb3) were rarely present (3/61). Two different tissue compartments expressed GRP-receptors: the tumoral vasculature was the predominant site of GRP-receptor expression (38/61), whereas neoplastic cells more rarely expressed GRP-receptors (14/61). GRP-receptor positive vessels were present in the various classes of ovarian tumors; generally, malignant tumors had a higher incidence of GRP-receptor positive vessels compared to their benign counterparts. The prevalence of such vessels was particularly high in ovarian carcinomas (16/19) and their metastases (5/5). The GRP-receptors were expressed in high density in the muscular vessel wall. Normal ovary (n=10) lacked GRP-receptors. Conclusions: The large amounts of GRP-receptors in ovarian tumor vessels suggest a role in tumoral vasculature and possibly angiogenesis. Further, these vessels might be targeted in vivo with bombesin analogs for diagnosis or for therapy.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Eugenia V. Gurevich ◽  
Vsevolod V. Gurevich

Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.


1991 ◽  
Vol 266 (28) ◽  
pp. 18771-18779
Author(s):  
M.H. Corjay ◽  
D.J. Dobrzanski ◽  
J.M. Way ◽  
J. Viallet ◽  
H. Shapira ◽  
...  

Author(s):  
Ümit Suat Mayadali ◽  
Jérome Fleuriet ◽  
Michael Mustari ◽  
Hans Straka ◽  
Anja Kerstin Ellen Horn

AbstractExtraocular motoneurons initiate dynamically different eye movements, including saccades, smooth pursuit and vestibulo-ocular reflexes. These motoneurons subdivide into two main types based on the structure of the neuro-muscular interface: motoneurons of singly-innervated (SIF), and motoneurons of multiply-innervated muscle fibers (MIF). SIF motoneurons are thought to provoke strong and brief/fast muscle contractions, whereas MIF motoneurons initiate prolonged, slow contractions. While relevant for adequate functionality, transmitter and ion channel profiles associated with the morpho-physiological differences between these motoneuron types, have not been elucidated so far. This prompted us to investigate the expression of voltage-gated potassium, sodium and calcium ion channels (Kv1.1, Kv3.1b, Nav1.6, Cav3.1–3.3, KCC2), the transmitter profiles of their presynaptic terminals (vGlut1 and 2, GlyT2 and GAD) and transmitter receptors (GluR2/3, NMDAR1, GlyR1α) using immunohistochemical analyses of abducens and trochlear motoneurons and of abducens internuclear neurons (INTs) in macaque monkeys. The main findings were: (1) MIF and SIF motoneurons express unique voltage-gated ion channel profiles, respectively, likely accounting for differences in intrinsic membrane properties. (2) Presynaptic glutamatergic synapses utilize vGlut2, but not vGlut1. (3) Trochlear motoneurons receive GABAergic inputs, abducens neurons receive both GABAergic and glycinergic inputs. (4) Synaptic densities differ between MIF and SIF motoneurons, with MIF motoneurons receiving fewer terminals. (5) Glutamatergic receptor subtypes differ between MIF and SIF motoneurons. While NMDAR1 is intensely expressed in INTs, MIF motoneurons lack this receptor subtype entirely. The obtained cell-type-specific transmitter and conductance profiles illuminate the structural substrates responsible for differential contributions of neurons in the abducens and trochlear nuclei to eye movements.


1994 ◽  
Vol 72 (2) ◽  
pp. 168-173 ◽  
Author(s):  
Daniel Abran ◽  
Daya R. Varma ◽  
Ding-You Li ◽  
Sylvain Chemtob

The upper blood pressure limit of retinal blood flow autoregulation is lower in the newborn than in the adult; this suggests an insufficient vasoconstrictor response in the newborn when perfusion pressure is increased. Because prostaglandins (PGs) have an important role in autoregulation of retinal blood flow, we compared the effects of PGE2, PGF2α, carbacyclin (PGI2 analogue), and U46619 (thromboxane analogue), as well as that of agonists for the three different PGE2 receptor subtypes, 17-phenyl trinor PGE2 (EP1), butaprost (EP2), and M&B 28,767 (EP3), on the retinal vasculature of newborn and adult pigs, using isolated eyecup preparations. PGF2α and PGE2 caused a markedly greater constriction of retinal arteries and veins of the adult than of the newborn animals. Further analysis of the response to PGE2, using receptor subtype agonists, revealed that the EP1 receptor agonist, 17-phenyl trinor PGE2, and the EP3 receptor agonist, M&B 28,767, caused a significant constriction of adult arteries and veins but produced minimal effects on newborn vessels; the EP2 receptor agonist, butaprost, caused a small and comparable dilation of newborn and adult arteries and veins. The PGI2 analogue, carbacyclin, caused a greater dilation of the adult than of the newborn arteries, but produced comparable dilation of veins from both newborn and adult animals. In contrast to the effects of PGF2α and PGE2, the thromboxane analogue, U46619, as well as the α1-adrenoceptor agonist, phenylephrine, significantly constricted newborn arteries and veins, and this effect was comparable with that observed on retinal vessels of the adult. Our findings indicate that the retinal vasculature of the newborn responds minimally to prostaglandins, primarily PGF2α and PGE2, compared with the adult, but constricts effectively to thromboxane. Since prostaglandins play an important role in the autoregulation of retinal blood flow, our observations provide an explanation for the inability of the newborn to limit blood flow when perfusion pressure is raised.Key words: retinal vascular responses, prostaglandins, thromboxane, PGE2 receptor subtypes.


1993 ◽  
Vol 90 (23) ◽  
pp. 11287-11291 ◽  
Author(s):  
T Bartfai ◽  
U Langel ◽  
K Bedecs ◽  
S Andell ◽  
T Land ◽  
...  

The galanin-receptor ligand M40 [galanin-(1-12)-Pro3-(Ala-Leu)2-Ala amide] binds with high affinity to [mono[125I]iodo-Tyr26]galanin-binding sites in hippocampal, hypothalamic, and spinal cord membranes and in membranes from Rin m5F rat insulinoma cells (IC50 = 3-15 nM). Receptor autoradiographic studies show that M40 (1 microM) displaces [mono[125I]iodo-Tyr26]galanin from binding sites in the hippocampus, hypothalamus, and spinal cord. In the brain, M40 acts as a potent galanin-receptor antagonist: M40, in doses comparable to that of galanin, antagonizes the stimulatory effects of galanin on feeding, and it blocks the galaninergic inhibition of the scopolamine-induced acetylcholine release in the ventral hippocampus in vivo. In contrast, M40 completely fails to antagonize both the galanin-mediated inhibition of the glucose-induced insulin release in isolated mouse pancreatic islets and the inhibitory effects of galanin on the forskolin-stimulated accumulation of 3',5'-cAMP in Rin m5F cells; instead M40 is a weak agonist at the galanin receptors in these two systems. M40 acts as a weak antagonist of galanin in the spinal flexor reflex model. These results suggest that at least two subtypes of the galanin receptor may exist. Hypothalamic and hippocampal galanin receptors represent a putative central galanin-receptor subtype (GL-1-receptor) that is blocked by M40. The pancreatic galanin receptor may represent another subtype (GL-2-receptor) that recognizes M40, but as a weak agonist. The galanin receptors in the spinal cord occupy an intermediate position between these two putative subtypes.


2012 ◽  
Vol 32 (4) ◽  
pp. 731-744 ◽  
Author(s):  
James FM Myers ◽  
Lula Rosso ◽  
Ben J Watson ◽  
Sue J Wilson ◽  
Nicola J Kalk ◽  
...  

This positron emission tomography (PET) study aimed to further define selectivity of [11C]Ro15-4513 binding to the GABARα5 relative to the GABARα1 benzodiazepine receptor subtype. The impact of zolpidem, a GABARα1-selective agonist, on [11C]Ro15-4513, which shows selectivity for GABARα5, and the nonselective benzodiazepine ligand [11C]flumazenil binding was assessed in humans. Compartmental modelling of the kinetics of [11C]Ro15-4513 time-activity curves was used to describe distribution volume ( VT) differences in regions populated by different GABA receptor subtypes. Those with low α5 were best fitted by one-tissue compartment models; and those with high α5 required a more complex model. The heterogeneity between brain regions suggested spectral analysis as a more appropriate method to quantify binding as it does not a priori specify compartments. Spectral analysis revealed that Zolpidem caused a significant VT decrease (~10%) in [11C]flumazenil, but no decrease in [11C]Ro15-4513 binding. Further analysis of [11C]Ro15-4513 kinetics revealed additional frequency components present in regions containing both α1 and α5 subtypes compared with those containing only α1. Zolpidem reduced one component (mean ± s.d.: 71% ± 41%), presumed to reflect α1-subtype binding, but not another (13% ± 22%), presumed to reflect α5. The proposed method for [11C]Ro15-4513 analysis may allow more accurate selective binding assays and estimation of drug occupancy for other nonselective ligands.


1989 ◽  
Vol 262 (2) ◽  
pp. 665-668 ◽  
Author(s):  
M G Cattaneo ◽  
L M Vicentini

We investigated the mechanism(s) whereby activation of a growth-factor receptor typically endowed with tyrosine kinase activity, such as the platelet-derived growth factor (PDGF) receptor, triggers phosphoinositide hydrolysis. In Swiss 3T3 cells permeabilized with streptolysin O, an analogue of GTP, guanosine 5′-[gamma-thio]triphosphate, was found to potentiate the coupling of the bombesin receptor to phospholipase C. In contrast, the activation of the enzyme by PDGF occurred in a GTP-independent manner. Moreover, the inactive analogue of GTP, guanosine 5′-[beta-thio]diphosphate, significantly inhibited the bombesin-induced InsP3 generation, whereas it did not decrease the same effect when stimulated by PDGF.


Sign in / Sign up

Export Citation Format

Share Document