scholarly journals Selective Transport of Silver(I) Ion Through Polymer Membranes Containing Thioether Donor Macrocycles as Carriers

2008 ◽  
Vol 5 (2) ◽  
pp. 271-274 ◽  
Author(s):  
A. Nezhadali ◽  
M. Akbarpour

The Preparation of polymer membrane and it's selectivity to silver(I) ion from an aqueous solution containing seven metal cations, Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II) and Pb(II), was studied. The source phase contained equimolar concentrations of the above mentioned cations with the source and receiving phases being buffered at pH 5.0 and 3.0 respectively. The effect of variation in the number of the macrocyclic sulfur atom donor set anssd the size of ring 9 and 16 member macrocycles on transport efficiency is presented. Silver(I) ion transport occurred (at 25°C) from the aqueous source phase across the polymer membrane (derived from cellulos triacetate) containing ligands 9-membered, S3-donor and16-membered S4-donor macrocycles as the ionophors in separate experiments into the aqueous receiving phase. Clear transport selectivity for silver(I) ion was observed using both thioether donor macrocycles. The efficiency of transport rate for silver(I) ion with using 9-membered S3-donor macrocycle as carrier was better than 16-membered S4-donor .

2021 ◽  
Vol 19 (1) ◽  
pp. 806-817
Author(s):  
Muhammad Cholid Djunaidi ◽  
Nabilah Anindita Febriola ◽  
Abdul Haris

Abstract High levels of urea and creatinine in the blood are a sign of decreased kidney function. To remove these substances from the blood, hemodialysis which utilizes membranes could be used. In this study, a molecularly imprinted membrane (MIM) was synthesized for the selective transport of urea. The synthesis is initiated with the polymerization of eugenol into polyeugenol and then into polyeugenoxy acetate (PA). The PA is then contacted with urea and then used as the functional polymer in the synthesis of MIM with polysulfone as the membrane base, and polyethylene glycol as the cross-linking agent. The result was later analyzed with FTIR and SEM-EDX. The membrane is then used in the transport of urea, creatinine, and vitamin B12 and then compared with the non-imprinted membrane (NIM) performance. By using UV-Vis spectrophotometry, the results showed that the membrane with 10 h heating variation is able to transport more urea and is more selective than NIM; this proves that the urea template on the MIM enables it to recognize urea molecules better than creatinine and vitamin B12. The order of transport from the best results is urea > creatinine > vitamin B12.


2021 ◽  
Author(s):  
Chunying Li ◽  
Hui Chen ◽  
Xiaohai Yang ◽  
Kemin Wang ◽  
Jianbo Liu

A light-responsive ion transport switch has been developed based on conformation-dependent azobenzene-incorporated lipophilic G-quadruplex channels, which provides a new smart approach for the selective transport of K+ ions across the...


2014 ◽  
Vol 43 (33) ◽  
pp. 12711-12720 ◽  
Author(s):  
Lars Eklund ◽  
Tomas S. Hofer ◽  
Alexander K. H. Weiss ◽  
Andreas O. Tirler ◽  
Ingmar Persson

Experimental and simulation data of the thiosulfate ion show large similarities in hydration structure and mechanism with the sulfate ion but with weaker hydration of the terminal sulfur atom in thiosulfate.


2021 ◽  
pp. 2108672
Author(s):  
Zongyao Zhou ◽  
Digambar B. Shinde ◽  
Dong Guo ◽  
Li Cao ◽  
Reham Al Nuaimi ◽  
...  

2015 ◽  
Vol 27 (12) ◽  
pp. 4553-4562 ◽  
Author(s):  
Muhammad Cholid Djunaidi ◽  
Jumina ◽  
Dwi Siswanta ◽  
Mathias Ulbricht

2010 ◽  
Vol 8 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Maming Maming ◽  
Jumina Jumina ◽  
Dwi Siswanta ◽  
Hardjono Sastrohamidjojo ◽  
Keisuke Ohto

The study on the transport behavior of Cr(III), Cd(II), Pb(II), and Ag(I) through bulk liquid membrane using p-tert-butylcalix[4]arene-tetradiethylacetamide as ions carrier has been conducted. The aims of this work are to determine the optimum condition, efficiency, and transport selectivity of the carriers for those ions. Both optimum condition and transport efficiency were obtained by determination of the concentration of transported ions with variation of the source phase pH, ion carrier concentration, the nature of decomplexant agent in the receiving phase, and transport time. The transport selectivity of the ion carrier was obtained from the ions competition transport experiments. The amount of Cr(III), Pb(II), Cd(II), and Ag(I) transported across liquid membrane were 11.6, 25.5, 39.5, and 42.1% respectively. The ion carrier is selective for Cd(II), Pb(II), Ag(I), and strongly depends on the nature of decomplexant agent as well as transport mechanism. The remarkable selectivity was shown by the ion carrier to Ag(I) when the transport process was carry out under high concentration of acid in the source phase.   Keywords: transport, p-tert-butylcalix[4]arene-tetradiethylacetamide, efficiency, selectivity, bulk liquid membrane, heavy metals


2015 ◽  
Vol 3 (1) ◽  
pp. 67
Author(s):  
Riana Dewi ◽  
Admin Alif ◽  
Hermansyah Aziz

 ABSTRACT Determination of kinetic analysis of Co(II) ion transport through bulk liquid membranes by consecutive method have been study. The optimum condition was obtained at pH 4 for the intermediate phase and receiving phase at pH near zero, while the source phase at pH 7, oxine concentration in chloroform at source phase is 2.10 M, methyl red concentration in chloroform at receiving phase is 3.10 M. It was found that Co(II) ion receiving phase at optimum condition as 4.40%. Evaluation of Co(II) ion kinetic transport shows k1 as 0.0116 minutes-1 and k4 0.0113 minutes-1. Kinetic transport process of Co(I1) ion through bulk liquid membranes by consecutive method followed first order consecutive irreversible reaction rate low. Consecutive method can used as an alternative method in determination the optimum condition of metals ion transport and kinetic evaluation of mentioned transport metals ion. Keywords : bulk liquid membranes, consecutive, cobalt


2006 ◽  
Vol 283 (1-2) ◽  
pp. 301-309 ◽  
Author(s):  
Akira Yamauchi ◽  
A. Mounir EL Sayed ◽  
Kazuo Mizuguchi ◽  
Munemori Kodama ◽  
Yoshifumi Sugito

Sign in / Sign up

Export Citation Format

Share Document