scholarly journals A Low-Cost Hybrid Coordinated Checkpointing Protocol for Mobile Distributed Systems

2008 ◽  
Vol 4 (1) ◽  
pp. 13-32 ◽  
Author(s):  
Parveen Kumar

Mobile distributed systems raise new issues such as mobility, low bandwidth of wireless channels, disconnections, limited battery power and lack of reliable stable storage on mobile nodes. In minimum-process coordinated checkpointing, some processes may not checkpoint for several checkpoint initiations. In the case of a recovery after a fault, such processes may rollback to far earlier checkpointed state and thus may cause greater loss of computation. In all-process coordinated checkpointing, the recovery line is advanced for all processes but the checkpointing overhead may be exceedingly high. To optimize both matrices, the checkpointing overhead and the loss of computation on recovery, we propose a hybrid checkpointing algorithm, wherein an all-process coordinated checkpoint is taken after the execution of minimum-process coordinated checkpointing algorithm for a fixed number of times. Thus, the Mobile nodes with low activity or in doze mode operation may not be disturbed in the case of minimum-process checkpointing and the recovery line is advanced for each process after an all-process checkpoint. Additionally, we try to minimize the information piggybacked onto each computation message. For minimum-process checkpointing, we design a blocking algorithm, where no useless checkpoints are taken and an effort has been made to optimize the blocking of processes. We propose to delay selective messages at the receiver end. By doing so, processes are allowed to perform their normal computation, send messages and partially receive them during their blocking period. The proposed minimum-process blocking algorithm forces zero useless checkpoints at the cost of very small blocking.

Author(s):  
Parveen Kumar ◽  
Rachit Garg

Minimum-process coordinated checkpointing is a suitable approach to introduce fault tolerance in mobile distributed systems transparently. In order to balance the checkpointing overhead and the loss of computation on recovery, the authors propose a hybrid checkpointing algorithm, wherein an all-process coordinated checkpoint is taken after the execution of minimum-process coordinated checkpointing algorithm for a fixed number of times. In coordinated checkpointing, if a single process fails to take its checkpoint; all the checkpointing effort goes waste, because, each process has to abort its tentative checkpoint. In order to take the tentative checkpoint, an MH (Mobile Host) needs to transfer large checkpoint data to its local MSS over wireless channels. In this regard, the authors propose that in the first phase, all concerned MHs will take soft checkpoint only. Soft checkpoint is similar to mutable checkpoint. In this case, if some process fails to take checkpoint in the first phase, then MHs need to abort their soft checkpoints only. The effort of taking a soft checkpoint is negligibly small as compared to the tentative one. In the minimum-process coordinated checkpointing algorithm, an effort has been made to minimize the number of useless checkpoints and blocking of processes using probabilistic approach.


2008 ◽  
Vol 19 (04) ◽  
pp. 1015-1038 ◽  
Author(s):  
SUNIL KUMAR GUPTA ◽  
R. K. CHAUHAN ◽  
PARVEEN KUMAR

Checkpoint is a designated place in a program at which normal process is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. A checkpoint algorithm for mobile distributed systems needs to handle many new issues like: mobility, low bandwidth of wireless channels, lack of stable storage on mobile nodes, disconnections, limited battery power and high failure rate of mobile nodes. These issues make traditional checkpointing techniques unsuitable for such environments. Minimum-process coordinated checkpointing is an attractive approach to introduce fault tolerance in mobile distributed systems transparently. This approach is domino-free, requires at most two checkpoints of a process on stable storage, and forces only a minimum number of processes to checkpoint. But, it requires extra synchronization messages, blocking of the underlying computation or taking some useless checkpoints. In this paper, we design a minimum-process checkpointing algorithm for mobile distributed systems, where no useless checkpoint is taken. We reduce the blocking of processes by allowing the processes to do their normal computations, send messages and receive selective messages during their blocking period.


2012 ◽  
pp. 806-818
Author(s):  
Parveen Kumar ◽  
Rachit Garg

Minimum-process coordinated checkpointing is a suitable approach to introduce fault tolerance in mobile distributed systems transparently. In order to balance the checkpointing overhead and the loss of computation on recovery, the authors propose a hybrid checkpointing algorithm, wherein an all-process coordinated checkpoint is taken after the execution of minimum-process coordinated checkpointing algorithm for a fixed number of times. In coordinated checkpointing, if a single process fails to take its checkpoint; all the checkpointing effort goes waste, because, each process has to abort its tentative checkpoint. In order to take the tentative checkpoint, an MH (Mobile Host) needs to transfer large checkpoint data to its local MSS over wireless channels. In this regard, the authors propose that in the first phase, all concerned MHs will take soft checkpoint only. Soft checkpoint is similar to mutable checkpoint. In this case, if some process fails to take checkpoint in the first phase, then MHs need to abort their soft checkpoints only. The effort of taking a soft checkpoint is negligibly small as compared to the tentative one. In the minimum-process coordinated checkpointing algorithm, an effort has been made to minimize the number of useless checkpoints and blocking of processes using probabilistic approach.


Author(s):  
Parveen Kumar ◽  
Rachit Garg

Minimum-process coordinated checkpointing is a suitable approach to introduce fault tolerance in mobile distributed systems transparently. In order to balance the checkpointing overhead and the loss of computation on recovery, the authors propose a hybrid checkpointing algorithm, wherein an all-process coordinated checkpoint is taken after the execution of minimum-process coordinated checkpointing algorithm for a fixed number of times. In coordinated checkpointing, if a single process fails to take its checkpoint; all the checkpointing effort goes waste, because, each process has to abort its tentative checkpoint. In order to take the tentative checkpoint, an MH (Mobile Host) needs to transfer large checkpoint data to its local MSS over wireless channels. In this regard, the authors propose that in the first phase, all concerned MHs will take soft checkpoint only. Soft checkpoint is similar to mutable checkpoint. In this case, if some process fails to take checkpoint in the first phase, then MHs need to abort their soft checkpoints only. The effort of taking a soft checkpoint is negligibly small as compared to the tentative one. In the minimum-process coordinated checkpointing algorithm, an effort has been made to minimize the number of useless checkpoints and blocking of processes using probabilistic approach.


Author(s):  
Raman Kumar ◽  
Er Jyoti Arora

While dealing with Mobile Distributed systems, we come across some issues like: mobility, low bandwidth of wireless channels and dearth of stable storage on mobile nodes, disconnections, inadequate battery power and high failure rate of mobile nodes. Minimum-process coordinated checkpointing is considered an attractive methodology to introduce fault tolerance in mobile systems transparently. In this paper, we propose a non-blocking coordinated global state compilation algorithm for mobile computing systems, which requires only a minimum number of processes to take permanent recovery points. We reduce the communication complexity as compared to the Cao-Singhal algorithm [4], while keeping the number of useless recovery points unchanged. Finally, the paper presents an optimization technique, which significantly reduces the number of useless recovery points at the cost of minor increase in the communication complexity. In coordinated global state compilation, if a single process fails to take its tentative recovery point; all the recovery point effort is aborted. We try to reduce this effort by taking soft recovery points in the first phase at Mobile Hosts.


Author(s):  
Karan S Belsare ◽  
Gajanan D Patil

A low cost and reliable protection scheme has been designed for a three phase induction motor against unbalance voltages, under voltage, over voltage, short circuit and overheating protection. Taking the cost factor into consideration the design has been proposed using microcontroller Atmega32, MOSFETs, relays, small CTs and PTs. However the sensitivity of the protection scheme has been not compromised. The design has been tested online in the laboratory for small motors and the same can be implemented for larger motors by replacing the i-v converters and relays of suitable ratings.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 882
Author(s):  
M. Munzer Alseed ◽  
Hamzah Syed ◽  
Mehmet Cengiz Onbasli ◽  
Ali K. Yetisen ◽  
Savas Tasoglu

Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.


Sign in / Sign up

Export Citation Format

Share Document