scholarly journals Assessments of F16 Special Sensor Microwave Imager and Sounder Antenna Temperatures at Lower Atmospheric Sounding Channels

2009 ◽  
Vol 2009 ◽  
pp. 1-18 ◽  
Author(s):  
Banghua Yan ◽  
Fuzhong Weng

The main reflector of the Special Sensor Microwave Imager/Sounder (SSMIS) aboard the Defense Meteorological Satellite Program (DMSP) F-16 satellite emits variable radiation, and the SSMIS warm calibration load is intruded by direct and indirect solar radiation. These contamination sources produce antenna brightness temperature anomalies of around 2 K at SSMIS sounding channels which are obviously inappropriate for assimilation into numerical weather prediction models and remote sensing retrievals of atmospheric and surface parameters. In this study, antenna brightness temperature anomalies at several lower atmospheric sounding (LAS) channels are assessed, and the algorithm is developed for corrections of these antenna temperature anomalies. When compared against radiative transfer model simulations and simultaneous observations from AMSU-A aboard NOAA-16, the SSMIS antenna temperatures at 52.8, 53.6, 54.4, 55.5, 57.3, and 59.4 GHz after the anomaly correction exhibit small residual errors (<0.5 K). After such SSMIS antenna temperatures are applied to the National Center for Environmental Prediction Numerical Weather Prediction (NWP) model, more satellite data is used and the analysis field of the geopotential height is significantly improved throughout troposphere and lower stratosphere. Therefore, the SSMIS antenna temperatures after the anomaly correction have demonstrated their potentials in NWP models.

2021 ◽  
Author(s):  
Richard Maier ◽  
Bernhard Mayer ◽  
Claudia Emde ◽  
Aiko Voigt

&lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;p&gt;The increasing resolution of numerical weather prediction models makes 3D radiative effects more and more important. These effects are usually neglected by the simple 1D independent column approximations used in most of the current models. On top of that, these 1D radiative transfer solvers are also called far less often than the model&amp;#8217;s dynamical core.&lt;/p&gt; &lt;p&gt;To address these issues, we present a new &amp;#8222;dynamic&amp;#8220; approach of solving 3D radiative transfer. Building upon the existing TenStream solver (Jakub and Mayer, 2015), radiation in this 3D model is not solved completely in each radiation time step, but is rather only transported to adjacent grid boxes. For every grid box, outgoing fluxes are then calculated from the incoming fluxes from the neighboring grid cells of the previous time step. This allows to reduce the computational cost of 3D radiative transfer models to that of current 1D solvers.&lt;/p&gt; &lt;p&gt;Here, we show first results obtained with this new solver with a special emphasis on heating rates. Furthermore, we demonstrate issues related to the dynamical treatment of radiation as well as possible solutions to these problems.&lt;/p&gt; &lt;p&gt;In the future, the speed of this newly developed 3D dynamic TenStream solver will be further increased by reducing the number of spectral bands used in the radiative transfer calculations with the aim to get a 3D solver that can be called even more frequently than the 1D two-stream solvers used nowadays.&lt;/p&gt; &lt;p&gt;Reference:&lt;br&gt;&lt;span&gt;Jakub, F. and Mayer, B. (2015), A three-dimensional parallel radiative transfer model for atmospheric heating rates for use in cloud resolving models&amp;#8212;The TenStream solver, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 163, 2015, Pages 63-71, ISSN 0022-4073, . &lt;/span&gt;&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


2020 ◽  
Vol 13 (6) ◽  
pp. 3235-3261
Author(s):  
Steven Albers ◽  
Stephen M. Saleeby ◽  
Sonia Kreidenweis ◽  
Qijing Bian ◽  
Peng Xian ◽  
...  

Abstract. Solar radiation is the ultimate source of energy flowing through the atmosphere; it fuels all atmospheric motions. The visible-wavelength range of solar radiation represents a significant contribution to the earth's energy budget, and visible light is a vital indicator for the composition and thermodynamic processes of the atmosphere from the smallest weather scales to the largest climate scales. The accurate and fast description of light propagation in the atmosphere and its lower-boundary environment is therefore of critical importance for the simulation and prediction of weather and climate. Simulated Weather Imagery (SWIm) is a new, fast, and physically based visible-wavelength three-dimensional radiative transfer model. Given the location and intensity of the sources of light (natural or artificial) and the composition (e.g., clear or turbid air with aerosols, liquid or ice clouds, precipitating rain, snow, and ice hydrometeors) of the atmosphere, it describes the propagation of light and produces visually and physically realistic hemispheric or 360∘ spherical panoramic color images of the atmosphere and the underlying terrain from any specified vantage point either on or above the earth's surface. Applications of SWIm include the visualization of atmospheric and land surface conditions simulated or forecast by numerical weather or climate analysis and prediction systems for either scientific or lay audiences. Simulated SWIm imagery can also be generated for and compared with observed camera images to (i) assess the fidelity and (ii) improve the performance of numerical atmospheric and land surface models. Through the use of the latter in a data assimilation scheme, it can also (iii) improve the estimate of the state of atmospheric and land surface initial conditions for situational awareness and numerical weather prediction forecast initialization purposes.


2019 ◽  
Vol 12 (6) ◽  
pp. 3001-3017
Author(s):  
Imane Farouk ◽  
Nadia Fourrié ◽  
Vincent Guidard

Abstract. This article focuses on the selection of satellite infrared IASI (Infrared Atmospheric Sounding Interferometer) observations in the global numerical weather prediction (NWP) system ARPEGE (Action de Recherche Petite Echelle Grande Echelle). The observation simulation is performed with the sophisticated radiative transfer model RTTOV-CLD, which takes into account the cloud scattering and the multilayer clouds from atmospheric profiles and cloud microphysical profiles (liquid water content, ice content and cloud fraction). The aim of this work is to select homogeneous scenes by using the information of the collocated Advanced Very High Resolution Radiometer (AVHRR) pixels inside each IASI field of view and to retain the most favourable cases for the assimilation of IASI infrared radiances. Two methods to select homogeneous scenes using homogeneity criteria already proposed in the literature were adapted: the criteria derived from Martinet et al. (2013) for cloudy sky selection in the French mesoscale model AROME (Applications of Research to Operations at MEsoscale) and the criteria from Eresmaa (2014) for clear-sky selection in the global model IFS (Integrated Forecasting System). A comparison between these methods reveals considerable differences, in both the method to compute the criteria and the statistical results. From this comparison a revised method representing a kind of compromise between the different tested methods is proposed and it uses the two infrared AVHRR channels to define the homogeneity criteria in the brightness temperature space. This revised method has a positive impact on the observation minus the simulation statistics, while retaining 36 % of observations for the assimilation. It was then tested in the NWP system ARPEGE for the clear-sky assimilation. These criteria were added to the current data selection based on the McNally and Watts (2003) cloud detection scheme. It appears that the impact on analyses and forecasts is rather neutral.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Harel. B. Muskatel ◽  
Ulrich Blahak ◽  
Pavel Khain ◽  
Yoav Levi ◽  
Qiang Fu

Parametrization of radiation transfer through clouds is an important factor in the ability of Numerical Weather Prediction models to correctly describe the weather evolution. Here we present a practical parameterization of both liquid droplets and ice optical properties in the longwave and shortwave radiation. An advanced spectral averaging method is used to calculate the extinction coefficient, single scattering albedo, forward scattered fraction and asymmetry factor (bext, v, f, g), taking into account the nonlinear effects of light attenuation in the spectral averaging. An ensemble of particle size distributions was used for the ice optical properties calculations, which enables the effective size range to be extended up to 570 μm and thus be applicable for larger hydrometeor categories such as snow, graupel, and rain. The new parameterization was applied both in the COSMO limited-area model and in ICON global model and was evaluated by using the COSMO model to simulate stratiform ice and water clouds. Numerical weather prediction models usually determine the asymmetry factor as a function of effective size. For the first time in an operational numerical weather prediction (NWP) model, the asymmetry factor is parametrized as a function of aspect ratio. The method is generalized and is available on-line to be readily applied to any optical properties dataset and spectral intervals of a wide range of radiation transfer models and applications.


2017 ◽  
Vol 145 (10) ◽  
pp. 4127-4150 ◽  
Author(s):  
Syed Zahid Husain ◽  
Claude Girard

Inconsistencies may arise in numerical weather prediction models—that are based on semi-Lagrangian advection—when the governing dynamical and the kinematic trajectory equations are discretized in a dissimilar manner. This study presents consistent trajectory calculation approaches, both in the presence and absence of off-centering in the discretized dynamical equations. Both uniform and differential off-centering in the discretized dynamical equations have been considered. The proposed consistent trajectory calculations are evaluated using numerical experiments involving a nonhydrostatic two-dimensional theoretical mountain case and hydrostatic global forecasts. The experiments are carried out using the Global Environmental Multiscale model. Both the choice of the averaging method for approximating the velocity integral in the discretized trajectory equations and the interpolation scheme for calculating the departure positions are found to be important for consistent trajectory calculations. Results from the numerical experiments confirm that the proposed consistent trajectory calculation approaches not only improve numerical consistency, but also improve forecast accuracy.


2013 ◽  
Vol 6 (6) ◽  
pp. 1961-1975 ◽  
Author(s):  
K. Zink ◽  
A. Pauling ◽  
M. W. Rotach ◽  
H. Vogel ◽  
P. Kaufmann ◽  
...  

Abstract. Simulating pollen concentrations with numerical weather prediction (NWP) systems requires a parameterization for pollen emission. We have developed a parameterization that is adaptable for different plant species. Both biological and physical processes of pollen emission are taken into account by parameterizing emission as a two-step process: (1) the release of the pollen from the flowers, and (2) their entrainment into the atmosphere. Key factors influencing emission are temperature, relative humidity, the turbulent kinetic energy and precipitation. We have simulated the birch pollen season of 2012 using the NWP system COSMO-ART (Consortium for Small-scale Modelling – Aerosols and Reactive Trace Gases), both with a parameterization already present in the model and with our new parameterization EMPOL. The statistical results show that the performance of the model can be enhanced by using EMPOL.


2005 ◽  
Vol 32 (14-15) ◽  
pp. 1841-1863 ◽  
Author(s):  
Mark S. Roulston ◽  
Jerome Ellepola ◽  
Jost von Hardenberg ◽  
Leonard A. Smith

Sign in / Sign up

Export Citation Format

Share Document