scholarly journals On Control of Reaching Movements for Musculo-Skeletal Redundant Arm Model

2009 ◽  
Vol 6 (1) ◽  
pp. 11-26 ◽  
Author(s):  
Kenji Tahara ◽  
Suguru Arimoto ◽  
Masahiro Sekimoto ◽  
Zhi-Wei Luo

This paper focuses on a dynamic sensory-motor control mechanism of reaching movements for a musculo-skeletal redundant arm model. The formulation of a musculo-skeletal redundant arm system, which takes into account non-linear muscle properties obtained by some physiological understandings, is introduced and numerical simulations are perfomed. The non-linear properties of muscle dynamics make it possible to modulate the viscosity of the joints, and the end point of the arm converges to the desired point with a simple task-space feedback when adequate internal forces are chosen, regardless of the redundancy of the joint. Numerical simulations were performed and the effectiveness of our control scheme is discussed through these results. The results suggest that the reaching movements can be achieved using only a simple task-space feedback scheme together with the internal force effect that comes from non-linear properties of skeletal muscles without any complex mathematical computation such as an inverse dynamics or optimal trajectory derivation. In addition, the dynamic damping ellipsoid for evaluating how the internal forces can be determined is introduced. The task-space feedback is extended to the ‘virtual spring-damper hypothesis’ based on the research by Arimoto et al. (2006) to reduce the muscle output forces and heterogeneity of convergence depending on the initial state and desired position. The research suggests a new direction for studies of brain-motor control mechanism of human movements.

2005 ◽  
Vol 22 (11) ◽  
pp. 639-651 ◽  
Author(s):  
Kenji Tahara ◽  
Zhi-Wei Luo ◽  
Suguru Arimoto ◽  
Hitoshi Kino

Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


Author(s):  
Stephanie Follett ◽  
Amer Hameed ◽  
S. Darina ◽  
John G. Hetherington

In order to validate the numerical procedure, the explosion of a mine was recreated within the non-linear dynamics software, AUTODYN. Two models were created and analysed for the purposes of this study — buried and flush HE charge in sand. The explosion parameters — time of arrival, maximum overpressure and specific impulse were recorded at two stand-off distances above the ground surface. These parameters are then compared with LS-DYNA models and published experimental data. The results, presented in table format, are in reasonable agreement.


Author(s):  
Ariel B Thomas ◽  
Erienne V Olesh ◽  
Amelia Adcock ◽  
Valeriya Gritsenko

The whole repertoire of complex human motion is enabled by forces applied by our muscles and controlled by the nervous system. The impact of stroke on the complex multi-joint motor control is difficult to quantify in a meaningful way that informs about the underlying deficit in the active motor control and intersegmental coordination. We tested whether post-stroke deficit can be quantified with high sensitivity using motion capture and inverse modeling of a broad range of reaching movements. Our hypothesis is that muscle moments estimated based on active joint torques provide a more sensitive measure of post-stroke motor deficits than joint angles. The motion of twenty-two participants was captured while performing reaching movements in a center-out task, presented in virtual reality. We used inverse dynamics analysis to derive active joint torques that were the result of muscle contractions, termed muscle torques, that caused the recorded multi-joint motion. We then applied a novel analysis to separate the component of muscle torque related to gravity compensation from that related to intersegmental dynamics. Our results show that muscle torques characterize individual reaching movements with higher information content than joint angles do. Moreover, muscle torques enable distinguishing the individual motor deficits caused by aging or stroke from the typical differences in reaching between healthy individuals. Similar results were obtained using metrics derived from joint accelerations. This novel quantitative assessment method may be used in conjunction with home-based gaming motion-capture technology for remote monitoring of motor deficits and inform the development of evidence-based robotic therapy interventions.


2019 ◽  
Vol 38 (2) ◽  
pp. 544-557 ◽  
Author(s):  
Cristian Medè ◽  
Alberto Doria ◽  
Paolo Munaretto ◽  
Jorge SG Valdecasas

Usually cars are equipped with disk horns. In these devices electromagnetic energy is converted into mechanical energy of two nuclei that vibrate and impact each other – the impacts excite the disk that radiates sound. This paper aims at understanding the results of acoustic tests carried out on horns with different excitation voltages and different mounting brackets. Since many non-linear phenomena are inherent in the vibrations of the nuclei, a detailed model of the electromechanical system is developed. Results show the dependence of operating frequency on the input voltage and the role played by the various mechanical and electrical parameters on the dynamics of the horn. Particular non-linear effects, like sub-harmonic excitation, are presented and discussed. A general agreement between experimental results and numerical simulations is found.


2019 ◽  
Vol 25 (2) ◽  
pp. 308-315
Author(s):  
Takuhiro Sato ◽  
Riki Kurematsu ◽  
Shota Shigetome ◽  
Taiki Matsumoto ◽  
Kazuki Tsuruda ◽  
...  

1997 ◽  
Vol 182 ◽  
pp. 335-342 ◽  
Author(s):  
S. Massaglia ◽  
M. Micono ◽  
A. Ferrari ◽  
G. Bodo ◽  
P. Rossi

We discuss the non-linear evolution of Kelvin-Helmholtz instabilities in Herbig-Haro jets performing numerical simulations by means of a PPM hydro-code modified as to include non-equilibrium, optically thin, radiation losses and heating. In this paper we discuss in particular the effects of different functional dependences of heating on density. The results obtained show a weak dependency of the instability evolution on the different forms of the heating function, that is largely unknown, therefore the simple assumption of constant heating, adopted in previous papers on this matter, does not lead to severe limitations on the general applicability of the results to the astrophysical jets and, in particular, to the origin of the emission knots.


Sign in / Sign up

Export Citation Format

Share Document