scholarly journals Experimental Observation of Oscillating Wave Propagation on Switch Lines for Generation of Continuous Electromagnetic Waves

2009 ◽  
Vol 2009 ◽  
pp. 1-4
Author(s):  
Koichi Narahara ◽  
Akihiro Yokota

We report the experimental observation of the generation of continuous electrical waves in a switch line, which is a transmission line periodically loaded with electronic switches. The oscillating motions of a wave front have been experimentally demonstrated in a line with discrete Esaki diodes employed as switches, when a rising step-pulse signal was passed through the line.

Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 443-452
Author(s):  
Tianshu Jiang ◽  
Anan Fang ◽  
Zhao-Qing Zhang ◽  
Che Ting Chan

AbstractIt has been shown recently that the backscattering of wave propagation in one-dimensional disordered media can be entirely suppressed for normal incidence by adding sample-specific gain and loss components to the medium. Here, we study the Anderson localization behaviors of electromagnetic waves in such gain-loss balanced random non-Hermitian systems when the waves are obliquely incident on the random media. We also study the case of normal incidence when the sample-specific gain-loss profile is slightly altered so that the Anderson localization occurs. Our results show that the Anderson localization in the non-Hermitian system behaves differently from random Hermitian systems in which the backscattering is suppressed.


1999 ◽  
Vol 62 (1) ◽  
pp. 87-94 ◽  
Author(s):  
J. GONG

A dispersion equation is derived for a cylindrical waveguide of circular cross-section partially filled with chiroplasma. The propagation characteristics of electromagnetic waves in the family of waveguide modes are studied. The dispersion curves are given. It is found that the propagation constant changes almost linearly with the chirality admittance for the parameters that we choose, and increases with increasing filled area.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Branimir Ivsic ◽  
Davor Bonefacic ◽  
Zvonimir Sipus ◽  
Juraj Bartolic

The electromagnetic wave propagation around human body torso is modelled by considering elementary electric and magnetic dipoles over an infinite muscle-equivalent cylinder. The poles in the spectral domain Green’s function with smallest imaginary part are found to correspond to creeping wave propagation coefficients which predict the general trend in propagation around human body. In addition, it was found that axial magnetic field component is crucial for communication via creeping waves since it generates modes with smaller field decay compared to axial electric field. The developed model may thus serve as a practical guideline in design of on-body wearable antennas. The theoretical considerations are verified with simulations and measurements on the prototype of PIFA antenna placed on the human body.


2018 ◽  
Vol 64 ◽  
pp. 05004
Author(s):  
Ying Lu ◽  
Zhibin Zhao ◽  
Jian gong Zhang ◽  
Zheyuan Gan

The passive interference of transmission lines to nearby radio stations may affect the effective reception and transmission of radio station signals. Therefore, the accurate calculation of the electromagnetic scattering of transmission lines under the condition of external electromagnetic waves is the basis for determining the reasonable avoidance spacing of the two. For passive stations operating in short-wave frequencies, passive interference is mainly generated by the tower, and span is one of the most significant factors affecting passive interference. This paper uses the method of moments to carry out the passive interference calculations under normal circumstances, expounds the method of calculating the electromagnetic field of transmission line at the same time. And elaborates the method for calculating the electromagnetic field of the transmission line, obtains the space electric field intensity of the transmission line at the same working frequency and space location of the plane wave. Applying the approximate formula to calculate the formula for the span and critical distance between the observation point and the transmission line.


2018 ◽  
Vol 64 ◽  
pp. 05005
Author(s):  
Ying Lu ◽  
Zhibin Zhao ◽  
Jian gong Zhang ◽  
Zheyuan Gan

The passive interference of transmission lines to nearby radio stations may affect the effective reception and transmission of radio station signals. Therefore, the accurate calculation of the electromagnetic scattering of transmission lines under the condition of external electromagnetic waves is the basis for determining the reasonable avoidance spacing of the two. For passive stations operating in short-wave frequencies, passive interference is mainly generated by the tower. This paper uses the method of moments to perform passive interference calculations under normal circumstances, And elaborates the method for calculating the electromagnetic field of the transmission line, obtains the space electric field intensity of the transmission line at the same working frequency and space location of the plane wave. Uses the approximate formula to inductive the formula for calculating height of tower and the protective distance.


2019 ◽  
Author(s):  
Ahmed A. Abdalazeez ◽  
Ira Didenkulova ◽  
Denys Dutykh

Abstract. The estimate of individual wave run-up is especially important for tsunami warning and risk assessment as it allows to evaluate the inundation area. Here as a model of tsunami we use the long single wave of positive polarity. The period of such wave is rather long which makes it different from the famous Korteweg–de Vries soliton. This wave is nonlinearly deformed during its propagation in the ocean which results in a steep wave front formation. Situations, when waves approach the coast with a steep front are often observed during large tsunamis, e.g. 2004 Indian Ocean and 2011 Tohoku tsunamis. Here we study the nonlinear deformation and run-up of long single waves of positive polarity in the conjoined water basin, which consists of the constant depth section and a plane beach. The work is performed numerically and analytically in the framework of the nonlinear shallow water theory. Analytically, wave propagation along the constant depth section and its run-up on a beach are considered independently without taking into account wave reflection from the toe of the bottom slope. The propagation along the bottom of constant depth is described by Riemann wave, while the wave run-up on a plane beach is calculated using rigorous analytical solutions of the nonlinear shallow water theory following the Carrier–Greenspan approach. Numerically, we use the finite volume method with the second order UNO2 reconstruction in space and the third order Runge–Kutta scheme with locally adaptive time steps. During wave propagation along the constant depth section, the wave becomes asymmetric with a steep wave front. Shown, that the maximum run-up height depends on the front steepness of the incoming wave approaching the toe of the bottom slope. The corresponding formula for maximum run-up height which takes into account the wave front steepness is proposed.


Sign in / Sign up

Export Citation Format

Share Document