scholarly journals The Possible Role of Epigenetics in Gestational Diabetes: Cause, Consequence, or Both

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
J. L. Fernández-Morera ◽  
S. Rodríguez-Rodero ◽  
E. Menéndez-Torre ◽  
M. F. Fraga

Gestational diabetes mellitus (GDM) is defined as the glucose intolerance that is not present or recognized prior to pregnancy. Several risk factors of GDM depend on environmental factors that are thought to regulate the genome through epigenetic mechanisms. Thus, epigenetic regulation could be involved in the development of GDM. In addition, the adverse intrauterine environment in patients with GDM could also have a negative impact on the establishment of the epigenomes of the offspring.

2021 ◽  
Author(s):  
Maria Grazia Dalfrà ◽  
Silvia Burlina ◽  
Annunziara Lapolla

Gestational diabetes mellitus (GDM) is the more frequent metabolic complication of pregnancy with a prevalence that is significantly increased in the last decade accounting for 12–18% of all pregnancies. Recent evidences strongly suggests that epigenetic profile changes could be involved in the onset of GDM and its related maternal and fetal complications. In particular, the unfavorable intrauterine environment related to hyperglycemia, a feature of GDM, has been evidenced to exert a negative impact on the establishment of the epigenome of the offspring. Furthermore the adverse in utero environment could be one of the mechanisms engaged in the development of adult chronic diseases. The purpose of this article is to review a number of published studies to fill the gap in our understanding of how maternal lifestyle and intrauterine environment influence molecular modifications in the offspring, with an emphasis on epigenetic alterations.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1357-P
Author(s):  
JESICA D. BARAN ◽  
MARCELA I. ARANGUREN ◽  
MARIA X. TAPPER ◽  
MARIA S. PAREDES ◽  
MARIA BELEN GENTILE ◽  
...  

2019 ◽  
Vol 25 (22) ◽  
pp. 2467-2473 ◽  
Author(s):  
Enrique Reyes-Muñoz ◽  
Federica Di Guardo ◽  
Michal Ciebiera ◽  
Ilker Kahramanoglu ◽  
Thozhukat Sathyapalan ◽  
...  

Background: Gestational Diabetes Mellitus (GDM), defined as glucose intolerance with onset or first recognition during pregnancy, represents one of the most common maternal-fetal complications during pregnancy and it is associated with poor perinatal outcomes. To date, GDM is a rising condition over the last decades coinciding with the ongoing epidemic of obesity and Type 2 Diabetes Mellitus (T2DM). Objective: The aim of this review is to discuss the role of diet and nutritional interventions in preventing GDM with the explanation of the special role of myo-inositol (MI) in this matter. Methods: We performed an overview of the most recent literature data on the subject with particular attention to the effectiveness of diet and nutritional interventions in the prevention of GDM with the special role of MI. Results: Nutritional intervention and physical activity before and during pregnancy are mandatory in women affected by GDM. Moreover, the availability of insulin-sensitizers such as different forms of inositol has dramatically changed the scenario, allowing the treatment of several metabolic diseases, such as those related to glucose dysbalance. Although the optimal dose, frequency, and form of MI administration need to be further investigated, diet supplementation with MI appears to be an attractive alternative for the GDM prevention as well as for the reduction of GDM-related complications. Conclusion: More studies should be conducted to prove the most effective nutritional intervention in GDM. Regarding the potential effectiveness of MI, further evidence in multicenter, randomized controlled trials is needed to draw firm conclusions.


2020 ◽  
Vol 59 (5) ◽  
pp. 718-722
Author(s):  
Fang Li ◽  
Ying Hu ◽  
Jing Zeng ◽  
Li Zheng ◽  
Peng Ye ◽  
...  

Epigenomes ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 13
Author(s):  
Dennise Lizárraga ◽  
Alejandra García-Gasca

Gestational diabetes mellitus (GDM) is a pregnancy complication first detected in the second or third trimester in women that did not show evident glucose intolerance or diabetes before gestation. In 2019, the International Diabetes Federation reported that 15.8% of live births were affected by hyperglycemia during pregnancy, of which 83.6% were due to gestational diabetes mellitus, 8.5% were due to diabetes first detected in pregnancy, and 7.9% were due to diabetes detected before pregnancy. GDM increases the susceptibility to developing chronic diseases for both the mother and the baby later in life. Under GDM conditions, the intrauterine environment becomes hyperglycemic, while also showing high concentrations of fatty acids and proinflammatory cytokines, producing morphological, structural, and molecular modifications in the placenta, affecting its function; these alterations may predispose the baby to disease in adult life. Molecular alterations include epigenetic mechanisms such as DNA and RNA methylation, chromatin remodeling, histone modifications, and expression of noncoding RNAs (ncRNAs). The placenta is a unique organ that originates only in pregnancy, and its main function is communication between the mother and the fetus, ensuring healthy development. Thus, this review provides up-to-date information regarding two of the best-documented (epigenetic) mechanisms (DNA methylation and miRNA expression) altered in the human placenta under GDM conditions, as well as potential implications for the offspring.


Sign in / Sign up

Export Citation Format

Share Document