scholarly journals Temporal Adaptive Changes in Contractility and Fatigability of Diaphragm Muscles from Streptozotocin-Diabetic Rats

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Marco Brotto ◽  
Leticia Brotto ◽  
J.-P. Jin ◽  
Thomas M. Nosek ◽  
Andrea Romani

Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type.

2003 ◽  
Vol 22 (6) ◽  
pp. 423-427 ◽  
Author(s):  
Mary Otsyula ◽  
Matthew S. King ◽  
Tonya G. Ketcham ◽  
Ruth A. Sanders ◽  
John B. Watkins

Two of the models used in current diabetes research include the hypergalactosemic rat and the hyperglucosemic, streptozotocin-induced diabetic rat. Few studies, however, have examined the concurrence of these two models regarding the effects of elevated hexoses on biomarkers of oxidative stress. This study compared the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase and the concentrations of glutathione, glutathione disulfide, and thiobarbituric acid reactants (as a measure of lipid peroxidation) in liver, kidney, and heart of Sprague-Dawley rats after 60 days of either a 50% galactose diet or insulin deficiency caused by streptozotocin injection. Most rats from both models developed bilateral cataracts. Blood glucose and glycosy-lated hemoglobin A1c concentrations were elevated in streptozotocin diabetic rats. Streptozotocin diabetic rats exhibited elevated activities of renal superoxide dismutase, cardiac catalase, and renal and cardiac glutathione peroxidase, as well as elevated hepatic lipid peroxidation. Insulin treatment of streptozotocin-induced diabetic rats normalized altered markers. In galactosemic rats, hepatic lipid peroxidation was increased whereas glutathione reductase activity was diminished. Glutathione levels in liver were decreased in diabetic rats but elevated in the galactosemic rats, whereas hepatic glutathione disulfide concentrations were decreased much more in diabetes than in galactosemia. Insulin treatment reversed/prevented all changes caused by streptozotocin-induced diabetes. Lack of concomitance in these data indicate that the 60-day galactose-fed rat is not experiencing the same oxidative stress as the streptozotocin diabetic rat, and that investigators must be cautious drawing conclusions regarding the concurrence of the effects of the two animal models on oxidative stress biomarkers.


1985 ◽  
Vol 228 (1) ◽  
pp. 249-255 ◽  
Author(s):  
J C Stanley ◽  
M J Fisher ◽  
C I Pogson

Flux through, and maximal activities of, key enzymes of phenylalanine and tyrosine degradation were measured in liver cells prepared from adrenalectomized rats and from streptozotocin-diabetic rats. Adrenalectomy decreased the phenylalanine hydroxylase flux/activity ratio; this was restored by steroid treatment in vivo. Changes in the phosphorylation state of the hydroxylase may mediate these effects; there was no significant change in the maximal activity of the hydroxylase. Tyrosine metabolism was enhanced by adrenalectomy; this was not related to any change in maximal activity of the aminotransferase. Steroid treatment increased the maximal activity of the aminotransferase. Both acute (3 days) and chronic (10 days) diabetes were associated with increased metabolism of phenylalanine; insulin treatment in vivo did not reverse these changes. Although elevated hydroxylase protein concentration was a major factor, changes in the enzyme phosphorylation state may contribute to differences in phenylalanine degradation in the acute and chronic diabetic states. Tyrosine metabolism, increased by diabetes, was partially restored to normal by insulin treatment in vivo. These changes can, to a large extent, be interpreted in terms of changes in the maximal activity of the aminotransferase.


2002 ◽  
Vol 282 (6) ◽  
pp. C1270-C1277 ◽  
Author(s):  
Lawrence M. Schwartz ◽  
Robert L. Ruff

Skeletal muscle atrophy and death are protracted processes that accompany aging and pathological insults in mammals. The intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta are composed of giant fibers that undergo distinct hormonally-regulated programs of atrophy and death at the end of metamorphosis. Atrophy occurs during the 3 days preceding adult emergence and results in a 40% reduction of mass, whereas death takes place during the subsequent 30 h and results in the complete loss of the fibers. There are no significant changes in tetanic force or calcium sensitivity in skinned fiber preparations during atrophy. However, the size of caffeine-induced contractions fell by about 50%. With the onset of the death phase, dramatic reductions occur in ISM: tetanic force, twitch amplitude, resting potential, caffeine-induced contractions, calcium sensitivity, and Hill coefficients. Several lines of evidence suggest that ISM atrophy is caused by an increase in protein turnover without significant modification of fiber organization. In contrast, ISM death is accompanied by disorganization of the contractile apparatus and concomitant loss of contractile function.


1977 ◽  
Vol 168 (3) ◽  
pp. 541-548 ◽  
Author(s):  
R L Khandelwal ◽  
S M Zinman ◽  
E J Zebrowski

The effects of streptozotocin-induced diabetes and of insulin supplementation to diabetic rats on glycogen-metabolizing enzymes in liver were determined. The results were compared with those from control animals. The activities of glycogenolytic enzymes, i.e. phosphorylase (both a and b), phosphorylase kinase and protein kinase (in the presence or in the absence of cyclic AMP), were significantly decreased in the diabetic animals. The enzyme activities were restored to control values by insulin therapy. Glycogen synthase (I-form) activity, similarly decreased in the diabetic animals, was also restored to control values after the administration of insulin. The increase in glycogen synthase(I-form) activity after insulin treatment was associated with a concomitant increase in phosphoprotein phosphatase activity. The increase in phosphatase activity was due to (i) a change in the activity of the enzyme itself and (ii) a decrease in a heat stable protein inhibitor of the phosphatase activity.


1985 ◽  
Vol 230 (2) ◽  
pp. 329-337 ◽  
Author(s):  
H Osmundsen ◽  
K Bjørnstad

Evidence showing that some unsaturated fatty acids, and in particular docosahexaenoic acid, can be powerful inhibitors of mitochondrial β-oxidation is presented. This inhibitory property is, however, also observed with the cis- and trans-isomers of the C18:1(16) acid. Hence it is probably the position of the double bond(s), and not the degree of unsaturation, which confers the inhibitory property. It is suggested that the inhibitory effect is caused by accumulation of 2,4-di- or 2,4,7-tri-enoyl-CoA esters in the mitochondrial matrix. This has previously been shown to occur with these fatty acids, in particular when the supply of NADPH was limiting 2,4-dienoyl-CoA reductase (EC 1.3.1.-) activity [Hiltunen, Osmundsen & Bremer (1983) Biochim. Biophys. Acta 752, 223-232]. Liver mitochondria from streptozotocin-diabetic rats showed an increased ability to β-oxidize 2,4-dienoyl-CoA-requiring acylcarnitines. Docosahexaenoylcarnitine was also found to be less inhibitory at lower concentrations with incubation under coupled conditions. With uncoupling conditions there was little difference between mitochondria from normal and diabetic rats in these respects. This correlates with a 5-fold stimulation of 2,4-dienoyl-CoA reductase activity found in mitochondria from streptozotocin-diabetic rats.


1988 ◽  
Vol 249 (2) ◽  
pp. 565-572 ◽  
Author(s):  
M S M Ardawi

1. In short- and long-term diabetic rats there is a marked increase in size of both the small intestine and colon, which was accompanied by marked decreases (P less than 0.001) and increases (P less than 0.001) in the arterial concentrations of glutamine and ketone bodies respectively. 2. Portal-drained viscera blood flow increased by approx. 14-37% when expressed as ml/100 g body wt., but was approximately unchanged when expressed as ml/g of small intestine of diabetic rats. 3. Arteriovenous-difference measurements for ketone bodies across the gut were markedly increased in diabetic rats, and the gut extracted ketone bodies at approx. 7 and 60 nmol/min per g of small intestine in control and 42-day-diabetic rats respectively. 4. Glutamine was extracted by the gut of control rats at a rate of 49 nmol/min per g of small intestine, which was diminished by 45, 76 and 86% in 7-, 21- and 42-day-diabetic rats respectively. 5. Colonocytes isolated from 7- or 42-day-diabetic rats showed increased and decreased rates of ketone-body and glutamine metabolism respectively, whereas enterocytes of the same animals showed no apparent differences in the rates of acetoacetate utilization as compared with control animals. 6. Prolonged diabetes had no effects on the maximal activities of either glutaminase or ketone-body-utilizing enzymes of colonic tissue preparations. 7. It is concluded that, although the epithelial cells of the small intestine and the colon during streptozotocin-induced diabetes exhibit decreased rates of metabolism of glutamine, such decreases were partially compensated for by enhanced ketone-body utilization by the gut mucosa of diabetic rats.


Sign in / Sign up

Export Citation Format

Share Document