scholarly journals Nona-Arginine Facilitates Delivery of Quantum Dots into Cells via Multiple Pathways

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Yi Xu ◽  
Betty Revon Liu ◽  
Han-Jung Lee ◽  
Katie B. Shannon ◽  
Jeffrey G. Winiarz ◽  
...  

Semiconductor quantum dots (QDs) have recently been used to deliver and monitor biomolecules, such as drugs and proteins. However, QDs alone have a low efficiency of transport across the plasma membrane. In order to increase the efficiency, we used synthetic nona-arginine (SR9), a cell-penetrating peptide, to facilitate uptake. We found that SR9 increased the cellular uptake of QDs in a noncovalent binding manner between QDs and SR9. Further, we investigated mechanisms of QD/SR9 cellular internalization. Low temperature and metabolic inhibitors markedly inhibited the uptake of QD/SR9, indicating that internalization is an energy-dependent process. Results from both the pathway inhibitors and the RNA interference (RNAi) technique suggest that cellular uptake of QD/SR9 is predominantly a lipid raft-dependent process mediated by macropinocytosis. However, involvement of clathrin and caveolin-1 proteins in transducing QD/SR9 across the membrane cannot be completely ruled out.

2008 ◽  
Vol 86 (4) ◽  
pp. 160-165 ◽  
Author(s):  
Milos M. Petrovic ◽  
Ljiljana Scepanovic ◽  
Gvozden Rosic ◽  
Dusan M. Mitrovic

The aim of this study was to determine the mechanism of transport of 14C-thiamin in the hearts of healthy (nonalcoholic) and chronically alcoholic guinea pigs. We used the single-pass, paired-tracer dilution method on isolated and retrogradely perfused guinea pig hearts. The maximal cellular uptake (Umax) and total cellular uptake (Utot) of 14C-thiamin were determined under control conditions and under influence of possible modifiers. We tested how the presence of unlabeled thiamin, metabolic inhibitors, or absence of sodium ions influence the transport of 14C-thiamin. The results of our experiments show that the transport of 14C-thiamin is specific and energy-dependent and that its properties are significantly changed under the influence of chronic alcoholism. The latter effect occurs by increase in both Umax and Utot, as a manifestation of a compensatory mechanism in thiamin deficiency.


2019 ◽  
Author(s):  
Candace E. Benjamin ◽  
Zhuo Chen ◽  
Olivia Brohlin ◽  
Hamilton Lee ◽  
Stefanie Boyd ◽  
...  

<div><div><div><p>The emergence of viral nanotechnology over the preceding two decades has created a number of intellectually captivating possible translational applications; however, the in vitro fate of the viral nanoparticles in cells remains an open question. Herein, we investigate the stability and lifetime of virus-like particle (VLP) Qβ - a representative and popular VLP for several applications - following cellular uptake. By exploiting the available functional handles on the viral surface, we have orthogonally installed the known FRET pair, FITC and Rhodamine B, to gain insight of the particle’s behavior in vitro. Based on these data, we believe VLPs undergo aggregation in addition to the anticipated proteolysis within a few hours of cellular uptake.</p></div></div></div>


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 462 ◽  
Author(s):  
Joanna Pilch ◽  
Patrycja Kowalik ◽  
Piotr Bujak ◽  
Anna M. Nowicka ◽  
Ewa Augustin

Nanotechnology-based drug delivery provides a promising area for improving the efficacy of cancer treatments. Therefore, we investigate the potential of using quantum dots (QDs) as drug carriers for antitumor unsymmetrical bisacridine derivatives (UAs) to cancer cells. We examine the influence of QD–UA hybrids on the cellular uptake, internalization (Confocal Laser Scanning Microscope), and the biological response (flow cytometry and light microscopy) in lung H460 and colon HCT116 cancer cells. We show the time-dependent cellular uptake of QD–UA hybrids, which were more efficiently retained inside the cells compared to UAs alone, especially in H460 cells, which could be due to multiple endocytosis pathways. In contrast, in HCT116 cells, the hybrids were taken up only by one endocytosis mechanism. Both UAs and their hybrids induced apoptosis in H460 and HCT116 cells (to a greater extent in H460). Cells which did not die underwent senescence more efficiently following QDs–UAs treatment, compared to UAs alone. Cellular senescence was not observed in HCT116 cells following treatment with both UAs and their hybrids. Importantly, QDgreen/red themselves did not provoke toxic responses in cancer or normal cells. In conclusion, QDs are good candidates for targeted UA delivery carriers to cancer cells while protecting normal cells from toxic drug activities.


Biochemistry ◽  
1977 ◽  
Vol 16 (6) ◽  
pp. 1151-1158 ◽  
Author(s):  
Visvanathan Chandramouli ◽  
Marianne Milligan ◽  
James R. Carter

2021 ◽  
Vol 27 (2) ◽  
pp. 200658-0
Author(s):  
Yeonjeong Ha ◽  
Xianzhe Wang ◽  
Howard M. Liljestrand ◽  
Jennifer A. Maynard ◽  
Lynn E. Katz

Understanding the molecular interactions between biological cells and engineered nanoparticles is a key to evaluating potential toxicities to humans and the environment. This study developed a method to determine the mechanisms by which fullerene aggregates are distributed into a representative cell line, human intestinal Caco-2 cells. First, we determined that the presence of fetal bovine serum (FBS) in the cell culture media changes the particle characteristics and inhibits particle adsorptions onto cell surfaces. Second, significantly lower amounts of fullerene were internalized at 4°C, a temperature at which active transport mechanisms are effectively impeded, than at 37°C. Third, metabolic inhibitors of active transport and a microtubule transport inhibitor decreased fullerene uptake at 37°C. Fourth, cellular uptake of fullerene increased with increasing fullerene concentration, suggesting that passive diffusion into lipid membranes contributed to uptake over the broad concentration range used in this study. Together, these results indicate fullerene transport into cells occurs via two mechanisms: passive diffusion across the lipid bilayer and active transport including microtubule involved endocytosis. The results also suggest that simple physical-chemical partitioning models do not fully describe fullerene uptake, and instead, active transport models are also required to estimate the cellular uptake and toxicity of fullerene.


RSC Advances ◽  
2021 ◽  
Vol 11 (57) ◽  
pp. 36116-36124
Author(s):  
Omar Paulino da Silva Filho ◽  
Muhanad Ali ◽  
Rike Nabbefeld ◽  
Daniel Primavessy ◽  
Petra H. Bovee-Geurts ◽  
...  

Noncovalent functionalization with acylated cell-penetrating peptides achieves an efficient cellular uptake of PLGA and PEG-PLGA nanoparticles.


2006 ◽  
Vol 505-507 ◽  
pp. 667-672 ◽  
Author(s):  
Chih Hui Yang ◽  
Kuo Chin Lin ◽  
Yu Huai Chang ◽  
Yu Cheng Lin

This paper described and characterized the quantum dots (QDs) with/without the polymeric PLGA applied in MC3T3E-1 delivery. Neat QDs were treated with various solvents, temperatures, exposure time and concentration to evaluate their stability and efficacy. We found that the intensity degree of fluorescence spectra (QDs) in different solvents follows the order: ether > THF > acetone > chloroform > methanol. Importantly, the QDs become inactive after 8-hr dissolution in the solvents of ether, THF or chloroform. According to this result, acetone and methanol are ideal solvents for QDs. The optimum concentration range of QDs in acetone is 5 to 10 mg/mL. We found that no obvious difference of fluorescence intensity was detected in QDs stored respectively at 4 °C, 24 °C and 44 °C (8-hour). When QDs were exposed to UV light (312 nm) for 2 hr, serious decay of fluorescence intensity was observed. In order to extend the application of QDs in medical areas, we encapsulated them in individual biocompatible poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for in-vitro imaging of endocytosis in MC3T3E-1 cells. We demonstrated that the polymeric PLGA have the ability to permeate the cells for cellular internalization; the endocytotic activity could be enhanced by the polymeric QDs-encapsulated PLGA.


Sign in / Sign up

Export Citation Format

Share Document