scholarly journals Elucidating the mechanism of cellular uptake of fullerene nanoparticles

2021 ◽  
Vol 27 (2) ◽  
pp. 200658-0
Author(s):  
Yeonjeong Ha ◽  
Xianzhe Wang ◽  
Howard M. Liljestrand ◽  
Jennifer A. Maynard ◽  
Lynn E. Katz

Understanding the molecular interactions between biological cells and engineered nanoparticles is a key to evaluating potential toxicities to humans and the environment. This study developed a method to determine the mechanisms by which fullerene aggregates are distributed into a representative cell line, human intestinal Caco-2 cells. First, we determined that the presence of fetal bovine serum (FBS) in the cell culture media changes the particle characteristics and inhibits particle adsorptions onto cell surfaces. Second, significantly lower amounts of fullerene were internalized at 4°C, a temperature at which active transport mechanisms are effectively impeded, than at 37°C. Third, metabolic inhibitors of active transport and a microtubule transport inhibitor decreased fullerene uptake at 37°C. Fourth, cellular uptake of fullerene increased with increasing fullerene concentration, suggesting that passive diffusion into lipid membranes contributed to uptake over the broad concentration range used in this study. Together, these results indicate fullerene transport into cells occurs via two mechanisms: passive diffusion across the lipid bilayer and active transport including microtubule involved endocytosis. The results also suggest that simple physical-chemical partitioning models do not fully describe fullerene uptake, and instead, active transport models are also required to estimate the cellular uptake and toxicity of fullerene.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Mauro Ravera ◽  
Elisabetta Gabano ◽  
Elena Perin ◽  
Beatrice Rangone ◽  
Diego Bonzani ◽  
...  

The possibility of spontaneous self-assembly of dicarboxylato Pt(IV) prodrugs and the consequences on their uptake in cancer cells have been evaluated in different aqueous solutions. Four Pt(IV) complexes, namely, (OC-6-33)-diacetatodiamminedichloridoplatinum(IV), Ace, (OC-6-33)-diamminedibutanoatodichloridoplatinum(IV), But, (OC-6-33)-diamminedichloridodihexanoatoplatinum(IV), Hex, and (OC-6-33)-diamminedichloridodioctanoatoplatinum(IV), Oct, have been dispersed in i) milliQ water, ii) phosphate buffered saline, and iii) complete cell culture media (RPMI 1640 or DMEM) containing fetal bovine serum (FBS). The samples have been analyzed by dynamic light scattering (DLS) to measure the size and distribution of the nanoparticles possibly present. The zeta potential offered an indication of the stability of the resulting aggregates. In the case of the most lipophilic compounds of the series, namely, Oct and to a lesser extent Hex, the formation of nanosized aggregates has been observed, in particular at the highest concentration tested (10 μM). The cell culture media had the effect to disaggregate these nanoparticles, mainly by virtue of their albumin content, able to interact with the organic chains via noncovalent (hydrophobic) interactions. For Oct, at the highest concentration employed for the uptake tests (10 μM), the combination between passive diffusion and endocytosis of the self-assembled nanoparticles makes the cellular uptake higher than in the presence of passive diffusion only. During the study of cellular uptake on A2780 ovarian cancer cells pretreated with cytochalasin D, a statistically significant inhibition of endocytosis was observed for Oct. In these experimental conditions, the relationship between uptake and lipophilicity becomes almost linear instead of exponential. Since Oct anticancer prodrug is active at nanomolar concentrations, where the aggregation in culture media is almost abolished, this phenomenon should not significantly impact its antiproliferative activity.


1999 ◽  
Vol 112 (12) ◽  
pp. 2033-2041
Author(s):  
J.J. Ludtke ◽  
G. Zhang ◽  
M.G. Sebestyen ◽  
J.A. Wolff

Although the entry of DNA into the nucleus is a crucial step of non-viral gene delivery, fundamental features of this transport process have remained unexplored. This study analyzed the effect of linear double stranded DNA size on its passive diffusion, its active transport and its NLS-assisted transport. The size limit for passive diffusion was found to be between 200 and 310 bp. DNA of 310–1500 bp entered the nuclei of digitonin treated cells in the absence of cytosolic extract by an active transport process. Both the size limit and the intensity of DNA nuclear transport could be increased by the attachment of strong nuclear localization signals. Conjugation of a 900 bp expression cassette to nuclear localization signals increased both its nuclear entry and expression in microinjected, living cells.


1960 ◽  
Vol 198 (4) ◽  
pp. 847-854 ◽  
Author(s):  
Frank Ulrich

Rabbit heart mitochondria contained potassium which could not be removed with four washings of isotonic sucrose or sodium chloride at 0–4°C. Aging, increasing concentrations of potassium, and a number of metabolic poisons either partially or completely inhibited the active transport of potassium into heart mitochondria when these particles were incubated for 15 minutes in air at 37.4° in a medium to which alpha-ketoglutarate and AMP or ATP had been added. Compounds uncoupling oxidative phosphorylation—such as arsenite, 2,4-dinitrophenol, l-thyroxine, calcium chloride, dicumarol, pentachlorophenol and methylene blue—inhibited potassium transport but usually only at relatively high concentrations (10–3 m). With the exception of p-chloromercuribenzoate, neither aging nor metabolic inhibitors prevented the extrusion of water by the mitochondria in the presence of alpha-ketoglutarate and AMP or ATP. Although addition of either ATP or substrate alone to the mitochondrial suspension resulted in a significant increase in the potassium gradient, the latter was much greater when both substrate and ATP (or ADP or AMP) were added together. ADP or AMP alone caused a very slight but probably not significant increase in the potassium gradient and creatine phosphate had no effect.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91102-91110 ◽  
Author(s):  
Fang Zhao ◽  
Jenny Perez Holmberg ◽  
Zareen Abbas ◽  
Rickard Frost ◽  
Tora Sirkka ◽  
...  

Different levels of model systems are needed for effect studies of engineered nanoparticles and the development of nanoparticle structure–activity relationships in biological systems.


2020 ◽  
Vol 203 ◽  
pp. 110922
Author(s):  
Seungjo Park ◽  
Jessica L. Gray ◽  
Sarah D. Altman ◽  
Angela R. Hairston ◽  
Brianna T. Beswick ◽  
...  

Microbiology ◽  
2009 ◽  
Vol 155 (6) ◽  
pp. 1866-1877 ◽  
Author(s):  
Petra Ganas ◽  
Roderich Brandsch

The mechanism by which l-nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by Arthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. l-[14C]Nicotine uptake assays with A. nicotinovorans showed transport of nicotine across the cell membrane to be energy-independent and saturable with a K m of 6.2±0.1 μM and a V max of 0.70±0.08 μmol min−1 (mg protein)−1. This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an A. nicotinovorans strain unable to degrade nicotine (pAO1−) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of l-[14C]nicotine took place. A. nicotinovorans pAO1− and Escherichia coli were also unable to import 6-hydroxy-l-nicotine, but expression of the 6-hydroxy-l-nicotine oxidase gene allowed both bacteria to take up this compound. l-Nicotine uptake was inhibited by d-nicotine, 6-hydroxy-l-nicotine and 2-amino-l-nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood–brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Yi Xu ◽  
Betty Revon Liu ◽  
Han-Jung Lee ◽  
Katie B. Shannon ◽  
Jeffrey G. Winiarz ◽  
...  

Semiconductor quantum dots (QDs) have recently been used to deliver and monitor biomolecules, such as drugs and proteins. However, QDs alone have a low efficiency of transport across the plasma membrane. In order to increase the efficiency, we used synthetic nona-arginine (SR9), a cell-penetrating peptide, to facilitate uptake. We found that SR9 increased the cellular uptake of QDs in a noncovalent binding manner between QDs and SR9. Further, we investigated mechanisms of QD/SR9 cellular internalization. Low temperature and metabolic inhibitors markedly inhibited the uptake of QD/SR9, indicating that internalization is an energy-dependent process. Results from both the pathway inhibitors and the RNA interference (RNAi) technique suggest that cellular uptake of QD/SR9 is predominantly a lipid raft-dependent process mediated by macropinocytosis. However, involvement of clathrin and caveolin-1 proteins in transducing QD/SR9 across the membrane cannot be completely ruled out.


Nature ◽  
1969 ◽  
Vol 222 (5196) ◽  
pp. 871-872 ◽  
Author(s):  
MAHENDRA K. JAIN ◽  
ALFRED STRICKHOLM ◽  
E. H. CORDES

1958 ◽  
Vol 36 (3) ◽  
pp. 363-371 ◽  
Author(s):  
E. Riklis ◽  
J. H. Quastel

2,4-Dinitrophenol, at low concentrations, inhibits potassium-stimulated active transport of glucose by the isolated surviving guinea pig intestine to a greater extent than the unstimulated glucose transport. The potassium stimulation is abolished in the presence of 0.04 mM 2,4-dinitrophenol. Potassium stimulation of the active transport of glucose and galactose in the isolated guinea pig intestine is inhibited by phlorizin at low concentrations (0.01 mM) which have little or no effect on the unstimulated sugar transport. The presence of phlorizin has little or no effect on active fructose absorption, as shown by the combined transport of fructose and glucose derived from the fructose. In the presence of 15.6 meq./liter K+phlorizin exerts a small depression of the active transport of fructose. Potassium stimulation of the active transport of glucose in the isolated guinea pig intestine is inhibited by the narcotic luminal at low concentrations (2 mM). Luminal (10 mM) abolishes the potassium stimulation. Sodium malonate, at the concentration 2 mM, which exerts no inhibition of active glucose transport in isolated surviving guinea pig intestine, brings about over 40% inhibition of glucose transport when this is stimulated by potassium ions. Choline, at 0.5 mM, suppresses potassium stimulation of the active glucose transport in the isolated surviving guinea pig intestine. It is suggested that an enzymatic mechanism exists, associated with intestinal membranes, that controls sugar transport and that phosphorylations, either directly or indirectly, are connected with it.


Sign in / Sign up

Export Citation Format

Share Document