scholarly journals Weakly Nonlinear Stability Analysis of a Thin Magnetic Fluid during Spin Coating

2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Cha'o-Kuang Chen ◽  
Dong-Yu Lai

This paper investigates the stability of a thin electrically conductive fluid under an applied uniform magnetic filed during spin coating. A generalized nonlinear kinematic model is derived by the long-wave perturbation method to represent the physical system. After linearizing the nonlinear evolution equation, the method of normal mode is applied to study the linear stability. Weakly nonlinear dynamics of film flow is studied by the multiple scales method. The Ginzburg-Landau equation is determined to discuss the necessary conditions of the various critical flow states, namely, subcritical stability, subcritical instability, supercritical stability, and supercritical explosion. The study reveals that the rotation number and the radius of the rotating circular disk generate similar destabilizing effects but the Hartmann number gives a stabilizing effect. Moreover, the optimum conditions can be found to alter stability of the film flow by controlling the applied magnetic field.

2009 ◽  
Vol 131 (10) ◽  
Author(s):  
C. K. Chen ◽  
M. C. Lin

This paper investigates the stability of a thin liquid film with condensation effects during spin coating. A generalized nonlinear kinematic model is derived by the long-wave perturbation method to represent the physical system. The weakly nonlinear dynamics of a film flow are studied by the multiple scales method. The Ginzburg–Landau equation is determined to discuss the necessary conditions of the various states of the critical flow states, namely, subcritical stability, subcritical instability, supercritical stability, and supercritical explosion. The study reveals that decreasing the rotation number and the radius of the rotating circular disk generally stabilizes the flow.


2011 ◽  
Vol 27 (1) ◽  
pp. 95-105 ◽  
Author(s):  
C. K. Chen ◽  
M. C. Lin ◽  
C. I. Chen

ABSTRACTThe stability analysis of a thin micropolar fluid flowing on a rotating circular disk is investigated numerically. The target is restricted to some neighborhood of critical value in the linear stability analysis. First, a generalized nonlinear kinematic model is derived by the long wave perturbation method. The method of normal mode is applied to the linear stability. After the weakly nonlinear dynamics of a film flow is studied by using the method of multiple scales, the Ginzburg-Landau equation is determined to discuss the necessary condition in terms of the various states of subcritical stability, subcritical instability, supercritical stability, and supercritical explosion for the existence of such flow pattern. The modeling results indicate that the rotation number and the radius of circular disk play the significant roles in destabilizing the flow. Furthermore, the micropolar parameter K serves as the stabilizing factor in the thin film flow.


2014 ◽  
Vol 30 (5) ◽  
pp. 505-513 ◽  
Author(s):  
C.-I. Chen ◽  
M.-C. Lin ◽  
C.-K. Chen

AbstractThe phenomena of surface instabilities in a thin power-law fluid during spin coating are investigated. The set of Navier-Stokes equations with non-Newtonian behavior in the region of low Reynolds number serves as a mathematical description of the physical systems. Long-wave perturbation analysis is proposed to derive an evolution equation of the Ostwald de-Waele type fluid to govern the propagation of surface waves. Weakly nonlinear dynamics of film flow is studied by the multiple scales method. The amplitude of instability is determined by a Ginzburg-Landau equation. The study reveals that the degree of power-law index plays a vital role in stabilizing the film flow. The shear-thinning fluid is more unstable than the shear-thickening fluid in the stability analysis. Further, the nonlinear wave speed in the supercritical stability region decreases with increasing values of power-law index.


2000 ◽  
Vol 123 (2) ◽  
pp. 411-421 ◽  
Author(s):  
Po-Jen Cheng ◽  
Cha’o-Kuang Chen ◽  
Hsin-Yi Lai

This paper investigates the weakly nonlinear stability theory of a thin micropolar liquid film flowing down along the outside surface of a vertical cylinder. The long-wave perturbation method is employed to solve for generalized nonlinear kinematic equations with free film interface. The normal mode approach is first used to compute the linear stability solution for the film flow. The method of multiple scales is then used to obtain the weak nonlinear dynamics of the film flow for stability analysis. The modeling results indicate that both subcritical instability and supercritical stability conditions are possible to occur in a micropolar film flow system. The degree of instability in the film flow is further intensified by the lateral curvature of cylinder. This is somewhat different from that of the planar flow. The modeling results also indicate that by increasing the micropolar parameter K=κ/μ and increasing the radius of the cylinder the film flow can become relatively more stable traveling down along the vertical cylinder.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Cha'o-Kuang Chen ◽  
Ming-Che Lin

The main object of this paper is to study the weakly nonlinear hydrodynamic stability of the thin Newtonian fluid flowing on a rotating circular disk. A long-wave perturbation method is used to derive the nonlinear evolution equation for the film flow. The linear behaviors of the spreading wave are investigated by normal mode approach, and its weakly nonlinear behaviors are explored by the method of multiple scales. The Ginzburg-Landau equation is determined to discuss the necessary condition for the existence of such flow pattern. The results indicate that the superctitical instability region increases, and the subcritical stability region decreases with the increase of the rotation number or the radius of circular disk. It is found that the rotation number and the radius of circular disk not only play the significant roles in destabilizing the flow in the linear stability analysis but also shrink the area of supercritical stability region at high Reynolds number in the weakly nonlinear stability analysis.


Author(s):  
B. Uma ◽  
R. Usha

Wealky nonlinear stability analysis of thin viscoelastic liquid film flowing down a vertical wall including the phase change effects at the interface has been investigated. A normal mode approach and the method of multiple scales are employed to carry out the linear stability solution and the nonlinear stability solution for the film flow system. The results show that both the supercritical stability and subcritical instability are possible for condensate, evaporating and isothermal viscoelastic film flow system. The stability characteristics of the viscoelastic film flow are strongly influenced by the phase change parameter. The condensate (Evaporating) viscoelastic film is more stable (unstable) than the isothermal viscoelastic film and the effect of viscoelasticity is to destabilize the film flowing down a vertical wall.


2013 ◽  
Vol 319 ◽  
pp. 90-95
Author(s):  
Ming Che Lin ◽  
Chun I Chen ◽  
Shou Jen Huang

The weakly nonlinear stability of a thin Ostwald de-Waele power-law fluid during spin coating is investigated. Long-wave perturbation analysis is proposed to derive a generalized kinematic model of the physical system with a small Reynolds number. The study reveals that the rotation number generates a destabilizing effect either in pseudoplastic fluid or in dilatant fluid. Further, it is shown that the degree of power-law index n plays a vital role in stabilizing the film flow.


2016 ◽  
Vol 32 (5) ◽  
pp. 643-651 ◽  
Author(s):  
C.-K. Chen ◽  
M.-C. Lin

AbstractThis paper investigates the weakly nonlinear stability of a thin axisymmetric viscoelastic fluid with hydromagnetic effects on coating flow. The governing equation is resolved using long-wave perturbation method as part of an initial value problem for spatial periodic surface waves with the Walter's liquid B type fluid. The most unstable linear mode of a film flow is determined by Ginzburg-Landau equation (GLE). The coefficients of the GLE are calculated numerically from the solution of the corresponding stability problem on coating flow. The effect of a viscoelastic fluid under an applied magnetic field on the nonlinear stability mechanism is studied in terms of the rotation number, Ro, viscoelastic parameter, k, and the Hartmann constant, m. Modeling results indicate that the Ro, k and m parameters strongly affect the film flow. Enhancing the magnetic effects is found to stabilize the film flow when the viscoelastic parameter destabilizes the one in a thin viscoelastic fluid.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Palle Kiran ◽  
B. S. Bhadauria

A study of thermal instability driven by buoyancy force is carried out in an initially quiescent infinitely extended horizontal rotating fluid layer. The temperature at the boundaries has been taken to be time-periodic, governed by the sinusoidal function. A weakly nonlinear stability analysis has been performed for the oscillatory mode of convection, and heat transport in terms of the Nusselt number, which is governed by the complex form of Ginzburg–Landau equation (CGLE), is calculated. The influence of external controlling parameters such as amplitude and frequency of modulation on heat transfer has been investigated. The dual effect of rotation on the system for the oscillatory mode of convection is found either to stabilize or destabilize the system. The study establishes that heat transport can be controlled effectively by a mechanism that is external to the system. Further, the bifurcation analysis also presented and established that CGLE possesses the supercritical bifurcation.


2020 ◽  
Vol 12 (6) ◽  
pp. 781-791
Author(s):  
S. H. Manjula ◽  
Palle Kiran ◽  
B. S. Bhadauria

The impact of vertical throughflow and g-jitter effect on rotating porous medium is investigated. A feeble nonlinear stability analysis associate to complex Ginzburg-Landau equation (CGLE) has been studied. This weakly nonlinear analysis performed for a periodic mode of convection and quantified heat transport in terms of the Nusselt number, which is governed by the non-autonomous advanced CGLE. Each idea, rotation and throughflow is used as an external mechanism to the system either to extend or decrease the heat transfer. The results of amplitude and frequency of modulation on heat transport are analyzed and portrayed graphically. Throughflow has dual impact on heat transfer either to increase or decrease heat transfer in the system. Particularly the outflow enhances and inflow diminishes the heat transfer. High centrifugal rates promote heat transfer and low centrifugal rates diminish heat transfer. The streamlines and isotherms area portrayed graphically, the results of rotation and throughflow on isotherms shows convective development.


Sign in / Sign up

Export Citation Format

Share Document