scholarly journals Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

2011 ◽  
Vol 8 (s1) ◽  
pp. S61-S66 ◽  
Author(s):  
C. Parvathi ◽  
T. Maruthavanan ◽  
S. Sivamani ◽  
C. Prakash

The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution. The effects of condition such as adsorbent dosage, initial dye concentration, pH and contact time were studied. The adsorption capacity was demonstrated as a function of time for malachite green from aqueous solution by the prepared activated carbon. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. Higher adsorption percentages were observed at lower concentrations of malachite green dye. Silver nitrate treated cassava peel showed a better performance compared to Sulphuric acid treated and raw carbons, thus making it an interesting option for dye removal textile effluent.

Author(s):  
K Arun Kumar ◽  
Sandeep. S,

This research work goals at searching the effectiveness of Malachite Green dye removal using banana stem, an agricultural waste as an activated carbon. The banana stem activated carbon was made ready in the laboratory by carbonization followed by activation. Adsorption studies were carried out to check the effect of various experimental conditions like different pH values, varying contact time, initial concentration of dye and changing banana stem carbon dosage on the removal of Malachite Green dye from aqueous solution at constant Temperature and agitation speed. The equilibrium experimental data were used for applicability of Langmuir and Freundlich isotherm models and the kinetic models. Batch test showed that maximum of 99% of dye was removed when the dye concentration was 2 mg/L, at an adsorbent dose of 0.75 gm/L at dye pH 8 in 45 minutes. From the obtained results it is validated that the equilibrium data’s favorable for both Freundlich and Langmuir isotherms. Maximum adsorption capacity of banana stem carbon on malachite green dye was found to be 8.29 mg/g. It was prevailing that the adsorption process followed the pseudo-second-order rate kinetics. It was observed that intra particle diffusion is not the only rate-limiting step in this adsorption system but also regression results indicate that the linear regression model gives the best results. The above observations recommend that Banana stem carbon can be competently implemented for removal of malachite green dye from aqueous solution in the adsorption treatment processes.


2018 ◽  
Vol 34 (3) ◽  
pp. 427-453 ◽  
Author(s):  
Kshitij Tewari ◽  
Gaurav Singhal ◽  
Raj Kumar Arya

Abstract In this review, the state of the art on the removal of malachite green dye from aqueous solution using adsorption technique is presented. The objective is to critically analyze different adsorbents available for malachite green dye removal. Hence, the available recent literature in the area is categorized according to the cost, feasibility, and availability of adsorbents. An extensive survey of the adsorbents, derived from various sources such as low cost biological materials, waste material from industry, agricultural waste, polymers, clays, nanomaterials, and magnetic materials, has been carried out. The review studies on different adsorption factors, such as pH, concentration, adsorbent dose, and temperature. The fitting of the adsorption data to various models, isotherms, and kinetic regimes is also reported.


Chemosphere ◽  
2021 ◽  
Vol 273 ◽  
pp. 129634
Author(s):  
A. Annam Renita ◽  
Kilaru Harsha Vardhan ◽  
P. Senthil Kumar ◽  
P. Tsopbou Ngueagni ◽  
A. Abilarasu ◽  
...  

Author(s):  
R. Sangeetha piriya ◽  
Rajamani M. Jayabalakrishnan ◽  
M. Maheswari ◽  
Kovilpillai Boomiraj ◽  
Sadish Oumabady

Abstract The coconut-based agricultural wastes have gained wide attention as an alternative adsorbent for the removal of diverse pollutants from the industrial effluents. This paper presents the zinc chloride activation of adsorbent carbon and the utilization as an adsorbent for the removal of malachite green dye from aqueous solution. The characterisation of activated carbon was performed to get an insight into the adsorption mechanism. The ZnCl2 activated carbon acquired a higher specific surface area (544.66 m2 g−1) and stability (−32.6 mV). The impact of process parameters including contact time (20–220 min) and initial dye concentration (20–80 mg L−1) were evaluated on the effectiveness of activated carbon for dye removal. The results concluded that zinc chloride activated carbon showed a significant dye adsorption (39.683 mg g−1) at an initial concentration of 20 mg L−1 after 3 hours. Based on the correlation coefficient (R2), the Freundlich isotherm model (0.978–0.998) was best fitted for the experimental data followed by the intraparticle diffusion model (0.88–0.929) as the most appropriate model for malachite green dye removal. Additionally, the energy and thermogravimetric analysis portrayed the suitability of the carbon material to be used as an energy alternative to coal.


2012 ◽  
Vol 28 (2) ◽  
pp. 153-167 ◽  
Author(s):  
Olugbenga Solomon Bello ◽  
Mohd Azmier Ahmad ◽  
Norhidayah Ahmad

Sign in / Sign up

Export Citation Format

Share Document