scholarly journals Friction Induced Wear of Rapid Prototyping Generated Materials: A Review

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
A. Tsouknidas

Additive manufacturing has been introduced in the early 80s and has gained importance as a manufacturing process ever since. Even though the inception of the implicated processes predominantly focused on prototyping purposes, during the last years rapid prototyping (RP) has emerged as a key enabling technology for the fabrication of highly customized, functionally gradient materials. This paper reviews friction-related wear phenomena and the corresponding deterioration mechanisms of RP-generated components as well as the potential of improving the implicated materials' wear resistance without significantly altering the process itself. The paper briefly introduces the concept of RP technologies and the implicated materials, as a premises to the process-dependent wear progression of the generated components for various degeneration scenarios (dry sliding, fretting, etc.).

2001 ◽  
Vol 299 (1-2) ◽  
pp. 218-224 ◽  
Author(s):  
Yumin Zhang ◽  
Jiecai Han ◽  
Xinghong Zhang ◽  
Xiaodong He ◽  
Zhiqiang Li ◽  
...  

2010 ◽  
Vol 105-106 ◽  
pp. 679-682
Author(s):  
Hong Tao Jiang ◽  
Xiu Feng Wang ◽  
Bao Cheng He ◽  
Cheng Long Yu

A novel rapid prototyping technology for glass-alumina functionally gradient materials (G-A FGMs) based on the quick solidification of wax was proposed. The feature of the technology came from its layer-by-layer fabrication of the wax-glass/alumina composite layer. With the help of orthogonal experiment method, the influence of different parameters (sintering temperature, component ratio (the glass and the alumina), and number of layers) on the flexural strength of FGMs was discussed. Optimum conditions obtained from the above experiments were applied to prepare the G-A FGM with three layers. The G-A FGM was analyzed in detail, by observing it under an environmental scanning electron microscope (ESEM) coupled with an X-ray energy dispersive spectrometer (X-EDS). The results of orthogonal experiment show that number of layers is the principal parameter to the flexural strength of FGMs, component ratio is the secondary factor, and sintering temperature may be not an important factor. The special microstructure appears in the cross section of the G-A FGM, observed by ESEM. It is from the X-EDS graph concluded that alumina and glass probably react to form the special microstructure with part removal of wax.


2008 ◽  
Vol 368-372 ◽  
pp. 1828-1830 ◽  
Author(s):  
Hong Tao Jiang ◽  
Xiu Feng Wang ◽  
Cheng Long Yu ◽  
Lian Juan Shan ◽  
Shuang Shuang Deng

A novel rapid prototyping manufacturing technology for glass-alumina functionally gradient materials (G-A FGMs) based on the quick solidification of wax was proposed. The feature of the technology came from its layer-by-layer fabrication of the wax-glass/alumina composite layer carved in accordance with the shape of each layer of the computer designed model and in situ casting of wax into the carved area. Removal of the wax in the G-A FGMs green body was investigated based on differential scanning calorimetry (DSC) analysis. Sintering properties of the G-A FGMs were discussed. Bending strength of the G-A FGMs was measured by a three-point flexural test. Microstructures of the prepared G-A FGMs were observed using environmental scanning electron microscope (ESEM) and the compositional distribution was determined according to energy dispersive spectrum (EDS). Samples were preliminarily and respectively held at 200°C and 300°C for a long time based on the DSC analysis. The range of the optimal sintering temperature is determined to be from 710°C to 720°C and the holding time is 30min. With the increasing alumina content, the bending strength increases and the maximum bending strength is 67.5MPa. There is no delamination of the G-A FGMs via ESEM. Homogeneous distribution of the ingredient materials is confirmed through EDS.


2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


2009 ◽  
Vol 75 ◽  
pp. 1-6 ◽  
Author(s):  
Fu Chi Wang ◽  
Qun Bo Fan ◽  
Lu Wang ◽  
Quan Sheng Wang ◽  
Zhuang Ma

To develop novel and advanced thermal barrier coatings, full-scale numerical simulation of plasma-sprayed functionally gradient materials is conducted in this paper, including the prediction of basic parameters at the nozzle exit, simulation of three dimensional simulation of the plasma jet, modeling of the interaction between the plasma jet and the particles, calculation of flight trajectories and temperature history of flying metal and ceramic particles, the interaction between the molten particles and the substrate, as well as the deposition process of the coatings. Various complex phenomena, such as turbulent effects with chemical reactions in the plasma jet, dispersion status of the particles onto the substrate, and the composition distribution of the functionally gradient materials, are fully taken into account. The numerical simulation results are found to be in good agreement with experimental evidence.


Sign in / Sign up

Export Citation Format

Share Document