scholarly journals Protection against Autoimmune Diabetes by Silkworm-Produced GFP-Tagged CTB-Insulin Fusion Protein

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Qiaohong Meng ◽  
Wenfeng Wang ◽  
Xiaowen Shi ◽  
Yongfeng Jin ◽  
Yaozhou Zhang

In animals, oral administration of the cholera toxin B (CTB) subunit conjugated to the autoantigen insulin enhances the specific immune-unresponsive state. This is called oral tolerance and is capable of suppressing autoimmune type 1 diabetes (T1D). However, the process by which the CTB-insulin (CTB-INS) protein works as a therapy for T1Din vivoremains unclear. Here, we successfully expressed a green fluorescent protein- (GFP-) tagged CTB-Ins (CTB-Ins-GFP) fusion protein in silkworms in a pentameric form that retained the native ability to activate the mechanism. Oral administration of the CTB-Ins-GFP protein induced special tolerance, delayed the development of diabetic symptoms, and suppressed T1D onset in nonobese diabetic (NOD) mice. Moreover, it increased the numbers of CD4+CD25+Foxp3+T regulatory (Treg) cells in peripheral lymph tissues and affected the biological activity of spleen cells. This study demonstrated that the CTB-Ins-GFP protein produced in silkworms acted as an oral protein vaccine, inducing immunological tolerance involving CD4+CD25+Foxp3+Treg cells in treating T1D.

Microbiology ◽  
2006 ◽  
Vol 152 (11) ◽  
pp. 3271-3280 ◽  
Author(s):  
Jan Hänisch ◽  
Marc Wältermann ◽  
Horst Robenek ◽  
Alexander Steinbüchel

In Ralstonia eutropha, the H16 phasin PhaP1 represents the major phasin that binds to the surface of polyhydroxyalkanoate (PHA) inclusions. In this study, C-terminal fusions of PhaP1 with enhanced green fluorescent protein (eGFP) and with Escherichia coli β-galactosidase (LacZ) were expressed separately in the triacylglycerol (TAG)-accumulating actinomycetes Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, employing the M. smegmatis acetamidase (ace) promoter of the Escherichia–Mycobacterium/Rhodococcus shuttle plasmid pJAM2. PhaP1 and the PhaP1 fusion proteins were expressed stably in the recombinant strains. Western blot analysis of cell fractions of Rh. opacus revealed that PhaP1 and the PhaP1–eGFP fusion protein were associated with the TAG inclusions, whereas no phasin or phasin fusion protein was detected in the soluble and membrane fractions. Additional electron microscopy/immunocytochemistry studies demonstrated that PhaP1 was mainly located on the surface of intracellular TAG inclusions; in addition, some PhaP1 also occurred at the plasma membrane. Fluorescence microscopic investigations of the subcellular distribution of the PhaP1–eGFP fusion protein in vivo and on isolated TAG inclusions revealed that the fusion protein was bound to TAG inclusions at all stages of their formation, and to some extent at the cytoplasmic membrane. The PhaP1–LacZ fusion protein also bound to the TAG inclusions, and could be separated together with the inclusions from Rh. opacus crude extracts, thus demonstrating the immobilization of β-galactosidase activity on the inclusions. This is believed to be the first report demonstrating the ability of PhaP1 to bind to lipid inclusions in addition to PHA inclusions. Furthermore, it was demonstrated that this non-specificity of PhaP1 can be utilized to anchor enzymically active fusion proteins to a matrix of bacterial TAG inclusions.


2006 ◽  
Vol 5 (6) ◽  
pp. 945-953 ◽  
Author(s):  
Guido Grossmann ◽  
Miroslava Opekarova ◽  
Linda Novakova ◽  
Jürgen Stolz ◽  
Widmar Tanner

ABSTRACT The hexose-proton symporter HUP1 shows a spotty distribution in the plasma membrane of the green alga Chlorella kessleri. Chlorella cannot be transformed so far. To study the membrane localization of the HUP1 protein in detail, the symporter was fused to green fluorescent protein (GFP) and heterologously expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. In these organisms, the HUP1 protein has previously been shown to be fully active. The GFP fusion protein was exclusively targeted to the plasma membranes of both types of fungal cells. In S. cerevisiae, it was distributed nonhomogenously and concentrated in spots resembling the patchy appearance observed previously for endogenous H+ symporters. It is documented that the Chlorella protein colocalizes with yeast proteins that are concentrated in 300-nm raft-based membrane compartments. On the other hand, it is completely excluded from the raft compartment housing the yeast H+/ATPase. As judged by their solubilities in Triton X-100, the HUP1 protein extracted from Chlorella and the GFP fusion protein extracted from S. cerevisiae are detergent-resistant raft proteins. S. cerevisiae mutants lacking the typical raft lipids ergosterol and sphingolipids showed a homogenous distribution of HUP1-GFP within the plasma membrane. In an ergosterol synthesis (erg6) mutant, the rate of glucose uptake was reduced to less than one-third that of corresponding wild-type cells. In S. pombe, the sterol-rich plasma membrane domains can be stained in vivo with filipin. Chlorella HUP1-GFP accumulated exactly in these domains. Altogether, it is demonstrated here that a plant membrane protein has the property of being concentrated in specific raft-based membrane compartments and that the information for its raft association is retained between even distantly related organisms.


1997 ◽  
Vol 8 (4) ◽  
pp. 705-717 ◽  
Author(s):  
K K Turnacioglu ◽  
B Mittal ◽  
G A Dabiri ◽  
J M Sanger ◽  
J W Sanger

Cultures of nonmuscle cells, skeletal myotubes, and cardiomyocytes were transfected with a fusion construct (Z1.1GFP) consisting of a 1.1-kb cDNA (Z1.1) fragment from the Z-band region of titin linked to the cDNA for green fluorescent protein (GFP). The Z1.1 cDNA encodes only 362 amino acids of the approximately 2000 amino acids that make up the Z-band region of titin; nevertheless, the Z1.1GFP fusion protein targets the alpha-actinin-rich Z-bands of contracting myofibrils in vivo. This fluorescent fusion protein also localizes in the nascent and premyofibrils at the edges of spreading cardiomyocytes. Similarly, in transfected nonmuscle cells, the Z1.1GFP fusion protein localizes to the alpha-actinin-containing dense bodies of the stress fibers in vivo. A dominant negative phenotype was also observed in living cells expressing high levels of this Z1.1GFP fusion protein, with myofibril disassembly occurring as titin-GFP fragments accumulated. These data indicate that the Z-band region of titin plays an important role in maintaining and organizing the structure of the myofibril. The Z1.1 cDNA was derived from a chicken cardiac lambda gt11 expression library, screened with a zeugmatin antibody. Recent work has suggested that zeugmatin is actually part of the N-terminal region of the 81-kb titin cDNA. A reverse transcriptase polymerase chain reaction using a primer from the distal end (5' end) of the Z1.1 zeugmatin cDNA and a primer from the nearest known proximal (3' end) chicken titin (also called connectin) cDNA resulted in a predicted 0.3-kb polymerase chain reaction product linking the two known chicken titin cDNAs to each other. The linking region had a 79% identity at the amino acid level to human cardiac titin. This result and a Southern blot analysis of chicken genomic DNA hybridized with Z1.1 add further support to our original suggestion that zeugmatin is a proteolytic fragment from the N-terminal region of titin.


2003 ◽  
Vol 23 (23) ◽  
pp. 8626-8636 ◽  
Author(s):  
Alejandro Contreras ◽  
Tracy K. Hale ◽  
David L. Stenoien ◽  
Jeffrey M. Rosen ◽  
Michael A. Mancini ◽  
...  

ABSTRACT The linker histone H1 is involved in maintaining higher-order chromatin structures and displays dynamic nuclear mobility, which may be regulated by posttranslational modifications. To analyze the effect of H1 tail phosphorylation on the modulation of the histone's nuclear dynamics, we generated a mutant histone H1, referred to as M1-5, in which the five cyclin-dependent kinase phosphorylation consensus sites were mutated from serine or threonine residues into alanines. Cyclin E/CDK2 or cyclin A/CDK2 cannot phosphorylate the mutant in vitro. Using the technique of fluorescence recovery after photobleaching, we observed that the mobility of a green fluorescent protein (GFP)-M1-5 fusion protein is decreased compared to that of a GFP-wild-type H1 fusion protein. In addition, recovery of H1 correlated with CDK2 activity, as GFP-H1 mobility was decreased in cells with low CDK2 activity. Blocking the activity of CDK2 by p21 expression decreased the mobility of GFP-H1 but not that of GFP-M1-5. Finally, the level and rate of recovery of cyan fluorescent protein (CFP)-M1-5 were lower than those of CFP-H1 specifically in heterochromatic regions. These data suggest that CDK2 phosphorylates histone H1 in vivo, resulting in a more open chromatin structure by destabilizing H1-chromatin interactions.


2020 ◽  
Vol 29 ◽  
pp. 096368972093912
Author(s):  
Virginia R. Aldrich ◽  
Barbara B. Hernandez-Rovira ◽  
Ankit Chandwani ◽  
Midhat H. Abdulreda

The nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) was discovered by coincidence in the 1980s and has since been widely used in the investigation of T1D and diabetic complications. The current in vivo study was originally designed to prospectively assess whether hyperglycemia onset is associated with physical destruction or functional impairment of beta cells under inflammatory insult during T1D progression in diabetes-prone female NOD mice. Prediabetic 16- to 20-wk-old NOD mice were transplanted with green fluorescent protein (GFP)-expressing reporter islets in the anterior chamber of the eye (ACE) that were monitored longitudinally, in addition to glycemia, with and without immune modulation using anti-CD3 monoclonal antibody therapy. However, there was an early and vigorous immune reaction against the GFP-expressing beta cells that lead to their premature destruction independent of autoimmune T1D development in progressor mice that eventually became hyperglycemic. This immune reaction also occurred in nonprogressor NOD recipients. These findings showed a previously unknown reaction of NOD mice to GFP that prevented achieving the original goals of this study but highlighted a new feature of the NOD mice that should be considered when designing experiments using this model in T1D research.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Peng-Fei Fu ◽  
Xuan Cheng ◽  
Bing-Qian Su ◽  
Li-Fang Duan ◽  
Cong-Rong Wang ◽  
...  

AbstractPseudorabies, caused by pseudorabies virus (PRV) variants, has broken out among commercial PRV vaccine-immunized swine herds and resulted in major economic losses to the pig industry in China since late 2011. However, the mechanism of virulence enhancement of variant PRV is currently unclear. Here, a recombinant PRV (rPRV HN1201-EGFP-Luc) with stable expression of enhanced green fluorescent protein (EGFP) and firefly luciferase as a double reporter virus was constructed on the basis of the PRV variant HN1201 through CRISPR/Cas9 gene-editing technology coupled with two sgRNAs. The biological characteristics of the recombinant virus and its lethality to mice were similar to those of the parental strain and displayed a stable viral titre and luciferase activity through 20 passages. Moreover, bioluminescence signals were detected in mice at 12 h after rPRV HN1201-EGFP-Luc infection. Using the double reporter PRV, we also found that 25-hydroxycholesterol had a significant inhibitory effect on PRV both in vivo and in vitro. These results suggested that the double reporter PRV based on PRV variant HN1201 should be an excellent tool for basic virology studies and evaluating antiviral agents.


Sign in / Sign up

Export Citation Format

Share Document