scholarly journals New Evaluation Technique for WTG Design Wind Speed Using a CFD-Model-Based Unsteady Flow Simulation with Wind Direction Changes

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Takanori Uchida ◽  
Takashi Maruyama ◽  
Yuji Ohya

Because a significant portion of the topography in Japan is characterized by steep, complex terrain, which results in a complex spatial distribution of wind speed, great care is necessary for selecting a site for the construction of wind turbine generators (WTG). We have developed a CFD model for unsteady flow called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, computational prediction of airflow over complex terrain). The RIAM-COMPACT CFD model is based on large eddy simulation (LES). The computational domain of RIAM-COMPACT can extend from several meters to several kilometers, and RIAM-COMPACT can predict airflow and gas diffusion over complex terrain with high accuracy. The present paper proposes a technique for evaluating the deployment location of a WTG. The proposed technique employs the RIAM-COMPACT CFD model and simulates a continuous wind direction change over 360 degrees.

2014 ◽  
Vol 660 ◽  
pp. 745-749
Author(s):  
Rosly Nurhayati ◽  
Mohd Sofian

ASEAN (Association of Southeast Asian Nations) countries may have a huge potential for utilizing wind energy as it requires little in the way of land. Land in these countries is very fertile and is used by other alternatives, therefore reducing its conduciveness for developing solar energy. The wind resources map is widely available for Laos, Vietnam, Thailand, Cambodia and Philippines but there is not much information about other ASEAN countries. Based on meteorological data, Tioman Island was selected as the area that had the best potential for installing wind turbines in Malaysia. A more detailed study was conducted using a CFD model for unsteady flow, known as the Research Institute for Applied Mechanics, Kyushu University, COMputational Prediction of Airflow over Complex Terrain (RIAM-COMPACT®) which is based on the Large-Eddy Simulation (LES) technique. Micro-siting technique is used as a tool for selecting appropriate point and an inappropriate point for locating wind turbine generators (WTGs) at Tioman Island, Malaysia. The suggested points for locating WTGs were shown based on the numerical results obtained from the calculation.


2013 ◽  
Vol 52 (7) ◽  
pp. 1610-1617 ◽  
Author(s):  
Pedro A. Jiménez ◽  
Jimy Dudhia

AbstractThe ability of the Weather Research and Forecasting (WRF) model to reproduce the surface wind direction over complex terrain is examined. A simulation spanning a winter season at a high horizontal resolution of 2 km is compared with wind direction records from a surface observational network located in the northeastern Iberian Peninsula. A previous evaluation has shown the ability of WRF to reproduce the wind speed over the region once the effects of the subgrid-scale topography are parameterized. Hence, the current investigation complements the previous findings, providing information about the model's ability to reproduce the direction of the surface flow. The differences between the observations and the model are quantified in terms of scores explicitly designed to handle the circular nature of the wind direction. Results show that the differences depend on the wind speed. The larger the wind speed is, the smaller are the wind direction differences. Areas with more complex terrain show larger systematic differences between model and observations; in these areas, a statistical correction is shown to help. The importance of the grid point selected for the comparison with observations is also analyzed. A careful selection is relevant to reducing comparative problems over complex terrain.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Takanori Uchida ◽  
Ryo Araya

In this paper, we use an analysis function for gas diffusion known as the Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain (RIAM-COMPACT), which was developed for complex terrain, in Airflow Analyst software, and apply it to the spread and dissipation of a fluid layer (assuming the fluid layer contains COVID-19 particles). First, to verify the prediction accuracy of the gas diffusion using RIAM-COMPACT, comparisons with past wind tunnel test results conducted on simple and complex terrains are presented under neutral atmospheric stability. The results of the numerical simulations carried out in this study show good agreement with the wind tunnel experiments for both simple and complex terrains. Next, a model of the Japan National Stadium (Tokyo Olympic Stadium) was constructed using 3D detailed topographic Advanced World 3D Map (AW3D) data generated by combining high-resolution satellite images. We tried to reproduce the hypothetical spread and dissipation of the fluid layer (assuming the fluid layer contains COVID-19 particles) inside and outside of the Japan National Stadium using Airflow Analyst implemented with the RIAM-COMPACT analysis function for gas diffusion. We paid special attention to the effect of wind ventilation driven by natural wind. The numerical results under various scenarios show that ventilation driven by natural wind is very effective for the Japan National Stadium.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1828
Author(s):  
Uk-Hyeon Yeo ◽  
Cristina Decano-Valentin ◽  
Taehwan Ha ◽  
In-Bok Lee ◽  
Rack-Woo Kim ◽  
...  

With the rise in livestock production, the odour concentration emitted from livestock facilities has significantly increased. For this reason, odour complaints have become a major issue. The dispersion of the odour into the atmosphere is affected by various factors (wind speed, wind direction, atmospheric stability, terrain condition, ventilation type, and so on). Thus, a thorough analysis on the factor influencing odour dispersion is necessary to establish regulations and policies for odour management. Therefore, this research aimed to evaluate odour dispersion generated from a pig house with complex terrain using computational fluid dynamics (CFD) and to statistically determine the key factor for odour dispersion. By comparing CFD-computed results with field-measured data, an appropriate grid size, time step, and turbulence model of the CFD model were determined. Considering various factors, case studies were performed using the validated CFD model. The CFD-computed results showed that odour dispersion distance at the level of 1 OU m−3 ranged from 129.7 to 1488.1 m. The prediction of odour dispersion distance varies with the change of factor being analysed. Finally, the statistical analysis showed that the most influential factor that affected odour dispersion distance was the wind speed with a t-value: −9.057.


Author(s):  
Jian-Cheng Cai ◽  
Jia-Qi Zhang ◽  
Can Yang

Abstract The 3-D unsteady turbulent flow inside a centrifugal fan and its downstream pipe is investigated at the best efficiency point (BEP) flow rate using the computational fluid dynamics (CFD) package ANSYS FLUENT. The impeller with an outlet diameter of 400 mm has 12 forward curved blades. The computational domain comprises four parts: the inlet part, the impeller, the volute, and the downstream pipe. The flow domain was meshed in ANSYS ICEM-CFD with structured hexahedron cells, and nearly 9 million cells were used. The Detached Eddy Simulation (DES) turbulence modelling approach was employed with this fine enough mesh scheme. The impeller was set as the rotating domain at a speed of 2900 rpm. A sliding mesh technique was applied to the interfaces in order to allow unsteady interactions between the rotating impeller and the stationary parts; the unsteady interactions generate pressure fluctuations inside the centrifugal fan. One impeller revolution is divided into 2048 time steps, in order to capture the transient flow phenomena with high resolution. Monitoring points were set along the volute casing profile, and along the downstream pipe centerline. When the numerical simulation became stable after several impeller revolutions, the statistics of the unsteady flow was initiated with a total of 16384 time steps (8 impeller revolutions) data. The time history data of the pressure and velocity magnitude at the monitoring points were saved and with Fourier transform applied to obtain the frequency spectra. The time-averaged flow fields show clearly the static pressure rises gradually through the impeller, and further recovers from the velocity in the volute, and decreases gradually along the downstream pipe due to the friction. The mean pressure at the pressure side of the impeller blade is larger than it at the suction side, forming the circumferential nonuniform flow pattern. Owing to the forward-curved blades, large velocity region exists around the impellor exit, and the maximum velocity near the trailing edge can reach 1.5u2, where u2 is the circumferential velocity at the impeller outlet. The root mean square (rms) value distribution of pressure fluctuations show that most parts inside the centrifugal fan undergo large pressure fluctuation with the magnitude about 10% of the reference dynamic pressure pref = 0.5ρu22; the maximum value locating at the tongue tip can reach 30% of pref. The pressure fluctuation magnitude decreases quickly along the outlet pipe: after 5D (D is the outlet pipe diameter) the magnitude is 0.5% of pref. The pressure and velocity fluctuation spectra at the monitoring points in the volute show striking discrete components at the blade-passing frequency (BPF) and its 2nd, 3rd harmonics. The BPF component has the maximum value of 15% of pref in the tongue region, and it decreases dramatically along the downstream pipe with the amplitude less than 0.2% of pref after 5D distance.


Author(s):  
Uchida Takanori

We have developed an unsteady and non-linear wind synopsis simulator called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, COMputational Prediction of Airflow over Complex Terrain) in order to simulate the airflow on a microscale, i.e., a few tens of km or less. In RIAM-COMPACT, the large-eddy simulation (LES) has been adopted for turbulence modeling. LES is a technique in which the structures of relatively large eddies are directly simulated and smaller eddies are modeled using a sub-grid scale model. In the present study, we have conducted the numerical wind diagnoses for Taikoyama Wind Farm nacelle separation accident in Japan. The simulation results suggest that all six wind turbines at the Taikoyama Wind Farm are subject to significant influence from separated flow (terrain-induced turbulence) which is generated due to the topographic irregularities in the vicinity of the wind turbines. A proposal has been also made on reconstruction of the wind farm.


2014 ◽  
Vol 1070-1072 ◽  
pp. 309-314
Author(s):  
Si Chao Liang ◽  
Xiao Dong Zhang ◽  
Shun Kang ◽  
Yong Feng Zhao

Detached eddy simulation (DES) with wall function was used in the flow simulation over complex terrain. Bolund Island with an almost vertical upstream escarpment was simulated, which has abundant measurements. Different density grids with the same size domain were employed. Flow structure details and good results can be obtained when the grid size is a twentieth or smaller than the height of the island in large separation region, when using central scheme. DES has better performance than RANS in large separation region.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
B. Subramanian ◽  
N. Chokani ◽  
R. S. Abhari

The aerodynamic characteristics of wakes in complex terrain have a profound impact on the energy yield of wind farms and on the fatigue loads on wind turbines in the wind farm. In order to detail the spatial variations of the wind speed, wind direction, and turbulent kinetic energy (TKE) in the near-wake, comprehensive drone-based measurements at a multi-megawatt (MW) wind turbine that is located in complex terrain have been conducted. A short-time Fourier transform (STFT)-based analysis method is used to derive time-localized TKE along the drone's trajectory. In upstream and in the near-wake, the vertical profiles of wind speed, wind direction, and TKE are detailed. There is an increase in the TKE from upstream to downstream of the wind turbine, and whereas, the characteristic microscale length scales increase with increasing height above the ground upstream of the turbine, in the near-wake the microscale lengths are of constant, smaller magnitude. The first-ever measurements of the pressure field across a multi-MW wind turbines rotor plane and of the tip vortices in the near-wake are also reported. It is shown that the pitch between subsequent tip vortices, which are shed from the wind turbines blades, increases in the near-wake as the wake evolves. These details of the near-wake can have an important effect on the subsequent evolution of the wake and must be incorporated into the three-dimensional (3D) field wake models that are currently under intensive development.


Sign in / Sign up

Export Citation Format

Share Document