scholarly journals Approximate Analytical Solution for One-Dimensional Solidification Problem of a Finite Superheating Phase Change Material Including the Effects of Wall and Thermal Contact Resistances

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Hamid El Qarnia ◽  
Fayssal El Adnani ◽  
El Khadir Lakhal

This work reports an analytical solution for the solidification of a superheating phase change material (PCM) contained in a rectangular enclosure with a finite height. The analytical solution has been obtained by solving nondimensional energy equations by using the perturbation method for a small perturbation parameter: the Stefan number,ε. This analytical solution, which takes into account the effects of the superheating of PCM, finite height of the enclosure, thickness of the wall, and wall-solid shell interfacial thermal resistances, was expressed in terms of nondimensional temperature distributions of the bottom wall of the enclosure and both PCM phases, and the dimensionless solid-liquid interface position and its dimensionless speed. The developed solution was firstly compared with that existing in the literature for the case of nonsuperheating PCM. The predicted results agreed well with those published in the literature. Next, a parametric study was carried out in order to study the impacts of the dimensionless control parameters on the dimensionless temperature distributions of the wall, the solid shell, and liquid phase of the PCM, as well as the solid-liquid interface position and its dimensionless speed.

2015 ◽  
Vol 36 (10-11) ◽  
pp. 2897-2915 ◽  
Author(s):  
Soumaya Kadri ◽  
Belgacem Dhifaoui ◽  
Yvan Dutil ◽  
Sadok Ben Jabrallah ◽  
Daniel R. Rousse

1989 ◽  
Vol 111 (1) ◽  
pp. 43-49 ◽  
Author(s):  
K. Sasaguchi ◽  
R. Viskanta

Melting and resolidification of a phase change material around two cylindrical heat exchangers spaced vertically have been investigated experimentally. Experiments have been performed to examine the effects of the cylinder surface temperatures on heat transfer during the melting and freezing cycle. The processes have been clarified on the basis of observations of timewise variations in the solid/liquid interface and of temperature distribution measurements in the phase change material. The results show that the solid/liquid interface contour during the melting and resolidification of the liquid from the upper cylinder is greatly affected by the surface temperature of the lower cylinder. The results show that multiple liquid regions may develop in the phase change material around the embedded heat sources/sinks, and the temperature swings and melting and freezing periods need to be selected properly in order to effectively utilize the phase change material in a latent heat energy storage unit.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 587
Author(s):  
Jay R. Patel ◽  
Manish K. Rathod

Latent heat energy storage using macro encapsulated phase change material is an emerging technique for thermal energy storage applica- tions. The main aim of the present investigation is to investigate the melting process of phase change material filled in different shaped configurations. The selected different cavities are square, circular and triangular. A mathematical model based on convection dominated melting is required to be developed, especially in view of the complex flow geometries encountered in such problems. Thus, an attempt has been made to develop a model using ANSYS Fluent 16.2 to investigate the heat transfer rate and solid-liquid interface visualization of PCM filled in different shapes of cavity. It is found that triangular shaped macro encapsulated PCM melts faster than square and circu- lar shaped encapsulated PCM.   


2018 ◽  
Vol 8 (9) ◽  
pp. 1627 ◽  
Author(s):  
Yong Wang ◽  
Jingmin Dai ◽  
Dongyang An

This paper investigates the melting process of phase change material in a rectangular cavity at different inclination angles. Paraffin is used as a phase change material in this study. One side of the cavity is heated while the other sides are considered to be adiabatic. The investigated angles of inclination include 0° (bottom horizontal heating), 30°, 60°, 90° (vertical heating), 120°, 150° and 180° (top horizontal heating). Shapes of the solid liquid interface and temperature variations during the melting process were discussed for all the inclination angles. The results reveal that the inclination angles have a significant impact on the melting behavior of paraffin. As the angle increases from 0° to 180°, the complete melting time increases non-linearly.


2020 ◽  
Vol 22 (4) ◽  
pp. 1439-1452
Author(s):  
Mohamed L. Benlekkam ◽  
Driss Nehari ◽  
Habib Y. Madani

AbstractThe temperature rise of photovoltaic’s cells deteriorates its conversion efficiency. The use of a phase change material (PCM) layer linked to a curved photovoltaic PV panel so-called PV-mirror to control its temperature elevation has been numerically studied. This numerical study was carried out to explore the effect of inner fins length on the thermal and electrical improvement of curved PV panel. So a numerical model of heat transfer with solid-liquid phase change has been developed to solve the Navier–Stokes and energy equations. The predicted results are validated with an available experimental and numerical data. Results shows that the use of fins improve the thermal load distribution presented on the upper front of PV/PCM system and maintained it under 42°C compared with another without fins and enhance the PV cells efficiency by more than 2%.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jacob Mingear ◽  
Zachary Farrell ◽  
Darren Hartl ◽  
Christopher Tabor

Inorganic Ga–In alloy nanoparticles suspended in a traditional thermal transport fluid simultaneously increase the overall thermal diffusivity of the fluid and serve as a cyclable solid–liquid PCM slurry, providing a thermal sink definable over a wide temperature range.


Author(s):  
Horacio Ramos-Aboites ◽  
Abel Hernandez-Guerrero ◽  
Salvador M. Aceves ◽  
Raul Lesso-Arroyo

This paper presents the results of a -numerical transient model for phase change in a storage cell filled with a phase change material (PCM). Phase change occurs under the presence of natural convection. The PCM is encapsulated in a cylindrical energy storage cell. Two cases of PCM melting are analyzed, (1) the surface temperature of the bottom half of the cylindrical cell is kept at a constant temperature, which is higher than the melting temperature of the PCM, and (2) a fluid flows under the cell with an inlet temperature that is higher than the melting point of the PCM. The results show the evolution of the solid-liquid interface, isotherms and flow lines during the melting process.


Sign in / Sign up

Export Citation Format

Share Document