scholarly journals Numerical investigation on the phase change process of different shaped macro encapsulated PCM

2018 ◽  
Vol 7 (4.5) ◽  
pp. 587
Author(s):  
Jay R. Patel ◽  
Manish K. Rathod

Latent heat energy storage using macro encapsulated phase change material is an emerging technique for thermal energy storage applica- tions. The main aim of the present investigation is to investigate the melting process of phase change material filled in different shaped configurations. The selected different cavities are square, circular and triangular. A mathematical model based on convection dominated melting is required to be developed, especially in view of the complex flow geometries encountered in such problems. Thus, an attempt has been made to develop a model using ANSYS Fluent 16.2 to investigate the heat transfer rate and solid-liquid interface visualization of PCM filled in different shapes of cavity. It is found that triangular shaped macro encapsulated PCM melts faster than square and circu- lar shaped encapsulated PCM.   

Author(s):  
Horacio Ramos-Aboites ◽  
Abel Hernandez-Guerrero ◽  
Salvador M. Aceves ◽  
Raul Lesso-Arroyo

This paper presents the results of a -numerical transient model for phase change in a storage cell filled with a phase change material (PCM). Phase change occurs under the presence of natural convection. The PCM is encapsulated in a cylindrical energy storage cell. Two cases of PCM melting are analyzed, (1) the surface temperature of the bottom half of the cylindrical cell is kept at a constant temperature, which is higher than the melting temperature of the PCM, and (2) a fluid flows under the cell with an inlet temperature that is higher than the melting point of the PCM. The results show the evolution of the solid-liquid interface, isotherms and flow lines during the melting process.


2018 ◽  
Vol 8 (9) ◽  
pp. 1627 ◽  
Author(s):  
Yong Wang ◽  
Jingmin Dai ◽  
Dongyang An

This paper investigates the melting process of phase change material in a rectangular cavity at different inclination angles. Paraffin is used as a phase change material in this study. One side of the cavity is heated while the other sides are considered to be adiabatic. The investigated angles of inclination include 0° (bottom horizontal heating), 30°, 60°, 90° (vertical heating), 120°, 150° and 180° (top horizontal heating). Shapes of the solid liquid interface and temperature variations during the melting process were discussed for all the inclination angles. The results reveal that the inclination angles have a significant impact on the melting behavior of paraffin. As the angle increases from 0° to 180°, the complete melting time increases non-linearly.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Hamid El Qarnia ◽  
Fayssal El Adnani ◽  
El Khadir Lakhal

This work reports an analytical solution for the solidification of a superheating phase change material (PCM) contained in a rectangular enclosure with a finite height. The analytical solution has been obtained by solving nondimensional energy equations by using the perturbation method for a small perturbation parameter: the Stefan number,ε. This analytical solution, which takes into account the effects of the superheating of PCM, finite height of the enclosure, thickness of the wall, and wall-solid shell interfacial thermal resistances, was expressed in terms of nondimensional temperature distributions of the bottom wall of the enclosure and both PCM phases, and the dimensionless solid-liquid interface position and its dimensionless speed. The developed solution was firstly compared with that existing in the literature for the case of nonsuperheating PCM. The predicted results agreed well with those published in the literature. Next, a parametric study was carried out in order to study the impacts of the dimensionless control parameters on the dimensionless temperature distributions of the wall, the solid shell, and liquid phase of the PCM, as well as the solid-liquid interface position and its dimensionless speed.


1992 ◽  
Vol 114 (1) ◽  
pp. 84-90 ◽  
Author(s):  
J. S. Lim ◽  
A. Bejan ◽  
J. H. Kim

This paper documents the relative merits of using more than one type of phase-change material for energy storage. In the case of two phase-change systems in series, which are melted by the same stream of hot fluid, there exists an optimal melting point for each of the two materials. The first (upstream) system has the higher of the two melting points. The second part of the paper addresses the theoretical limit in which the melting point can vary continuously along the source stream, i.e., when an infinite number of different (and small) phase-change systems are being heated in series. It is shown that the performance of this scheme is equivalent to that which uses an optimum single phase-change material, in which the hot stream remains unmixed during the melting process. The time dependence, finite thickness and longitudinal variation of the melt layer caused by an unmixed stream are considered in the third part of the paper. It is shown that these features have a negligible effect on the optimal melting temperature, which is slightly higher than (T∞Te)1/2.


2015 ◽  
Vol 36 (10-11) ◽  
pp. 2897-2915 ◽  
Author(s):  
Soumaya Kadri ◽  
Belgacem Dhifaoui ◽  
Yvan Dutil ◽  
Sadok Ben Jabrallah ◽  
Daniel R. Rousse

1989 ◽  
Vol 111 (1) ◽  
pp. 43-49 ◽  
Author(s):  
K. Sasaguchi ◽  
R. Viskanta

Melting and resolidification of a phase change material around two cylindrical heat exchangers spaced vertically have been investigated experimentally. Experiments have been performed to examine the effects of the cylinder surface temperatures on heat transfer during the melting and freezing cycle. The processes have been clarified on the basis of observations of timewise variations in the solid/liquid interface and of temperature distribution measurements in the phase change material. The results show that the solid/liquid interface contour during the melting and resolidification of the liquid from the upper cylinder is greatly affected by the surface temperature of the lower cylinder. The results show that multiple liquid regions may develop in the phase change material around the embedded heat sources/sinks, and the temperature swings and melting and freezing periods need to be selected properly in order to effectively utilize the phase change material in a latent heat energy storage unit.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3254 ◽  
Author(s):  
Túlio Nascimento Porto ◽  
João M. P. Q. Delgado ◽  
Ana Sofia Guimarães ◽  
Hortência Luma Fernandes Magalhães ◽  
Gicelia Moreira ◽  
...  

The development of thermal energy storage systems is a possible solution in the search for reductions in the difference between the global energy supply and demand. In this context, the ability of some materials, the so-called phase change materials (PCMs), to absorb and release large amounts of energy under specific periods and operating conditions has been verified. The applications of these materials are limited due to their low thermal conductivity, and thus, it is necessary to associate them with high-conductivity materials, such as metals, to make the control of energy absorption and release times possible. Bearing this in mind, this paper presents a numerical analysis of the melting process of a PCM into a triplex tube heat exchanger (TTHX) with finned copper tubes, which allowed for the heat transfer between a heating fluid (water) and the phase change material to power a liquid-desiccant air conditioning system. Through the analysis of the temperature fields, liquid fractions, and velocities, as well as the phase transition, it was possible to describe the material charging process; then, the results were compared with experimental data, which are available in the specialized literature, and presented mean errors of less than 10%. The total required time to completely melt the PCM was about 105.5 min with the water being injected into the TTHX at a flow rate of 8.3 L/min and a temperature of 90 °C. It was observed that the latent energy that accumulated during the melting process was 1330 kJ, while the accumulated sensitive energy was 835 kJ. The average heat flux at the internal surface of the inner tube was about 3 times higher than the average heat flux at the outer surface of the TTHX intermediate tube due to the velocity gradients that developed in the internal part of the heat exchanger, and was about 10 times more intense than those observed in the external region of the equipment.


Sign in / Sign up

Export Citation Format

Share Document