Numerical Simulation of Thermal Energy Storage in Cylindrical Cells

Author(s):  
Horacio Ramos-Aboites ◽  
Abel Hernandez-Guerrero ◽  
Salvador M. Aceves ◽  
Raul Lesso-Arroyo

This paper presents the results of a -numerical transient model for phase change in a storage cell filled with a phase change material (PCM). Phase change occurs under the presence of natural convection. The PCM is encapsulated in a cylindrical energy storage cell. Two cases of PCM melting are analyzed, (1) the surface temperature of the bottom half of the cylindrical cell is kept at a constant temperature, which is higher than the melting temperature of the PCM, and (2) a fluid flows under the cell with an inlet temperature that is higher than the melting point of the PCM. The results show the evolution of the solid-liquid interface, isotherms and flow lines during the melting process.

2018 ◽  
Vol 7 (4.5) ◽  
pp. 587
Author(s):  
Jay R. Patel ◽  
Manish K. Rathod

Latent heat energy storage using macro encapsulated phase change material is an emerging technique for thermal energy storage applica- tions. The main aim of the present investigation is to investigate the melting process of phase change material filled in different shaped configurations. The selected different cavities are square, circular and triangular. A mathematical model based on convection dominated melting is required to be developed, especially in view of the complex flow geometries encountered in such problems. Thus, an attempt has been made to develop a model using ANSYS Fluent 16.2 to investigate the heat transfer rate and solid-liquid interface visualization of PCM filled in different shapes of cavity. It is found that triangular shaped macro encapsulated PCM melts faster than square and circu- lar shaped encapsulated PCM.   


2018 ◽  
Vol 8 (9) ◽  
pp. 1627 ◽  
Author(s):  
Yong Wang ◽  
Jingmin Dai ◽  
Dongyang An

This paper investigates the melting process of phase change material in a rectangular cavity at different inclination angles. Paraffin is used as a phase change material in this study. One side of the cavity is heated while the other sides are considered to be adiabatic. The investigated angles of inclination include 0° (bottom horizontal heating), 30°, 60°, 90° (vertical heating), 120°, 150° and 180° (top horizontal heating). Shapes of the solid liquid interface and temperature variations during the melting process were discussed for all the inclination angles. The results reveal that the inclination angles have a significant impact on the melting behavior of paraffin. As the angle increases from 0° to 180°, the complete melting time increases non-linearly.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Zhonghao Rao ◽  
Yutao Huo ◽  
Yimin Li

The solid–liquid phase change process is of importance in the usage of phase change material (PCM). In this paper, the phase change lattice Boltzmann (LB) model has been used to investigate the solid–liquid phase change in an inclined cavity. Three heat flux distributions applied to the left wall are investigated: uniform distribution, linear distribution, and parabolic symmetry distribution. The results show that for all the heat flux distributions, the slight clockwise rotation of the cavity can accelerate the melting process. Furthermore, when more heat is transferred to the cavity through the middle part (parabolic symmetry distribution) or bottom part (linear distribution) of left wall, clockwise rotation of cavity leads to larger temperature of PCM.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Hamid El Qarnia ◽  
Fayssal El Adnani ◽  
El Khadir Lakhal

This work reports an analytical solution for the solidification of a superheating phase change material (PCM) contained in a rectangular enclosure with a finite height. The analytical solution has been obtained by solving nondimensional energy equations by using the perturbation method for a small perturbation parameter: the Stefan number,ε. This analytical solution, which takes into account the effects of the superheating of PCM, finite height of the enclosure, thickness of the wall, and wall-solid shell interfacial thermal resistances, was expressed in terms of nondimensional temperature distributions of the bottom wall of the enclosure and both PCM phases, and the dimensionless solid-liquid interface position and its dimensionless speed. The developed solution was firstly compared with that existing in the literature for the case of nonsuperheating PCM. The predicted results agreed well with those published in the literature. Next, a parametric study was carried out in order to study the impacts of the dimensionless control parameters on the dimensionless temperature distributions of the wall, the solid shell, and liquid phase of the PCM, as well as the solid-liquid interface position and its dimensionless speed.


1992 ◽  
Vol 114 (1) ◽  
pp. 84-90 ◽  
Author(s):  
J. S. Lim ◽  
A. Bejan ◽  
J. H. Kim

This paper documents the relative merits of using more than one type of phase-change material for energy storage. In the case of two phase-change systems in series, which are melted by the same stream of hot fluid, there exists an optimal melting point for each of the two materials. The first (upstream) system has the higher of the two melting points. The second part of the paper addresses the theoretical limit in which the melting point can vary continuously along the source stream, i.e., when an infinite number of different (and small) phase-change systems are being heated in series. It is shown that the performance of this scheme is equivalent to that which uses an optimum single phase-change material, in which the hot stream remains unmixed during the melting process. The time dependence, finite thickness and longitudinal variation of the melt layer caused by an unmixed stream are considered in the third part of the paper. It is shown that these features have a negligible effect on the optimal melting temperature, which is slightly higher than (T∞Te)1/2.


Author(s):  
Navin Kumar ◽  
Debjyoti Banerjee

Experimental validation was performed in this study to verify the efficacy of numerical models for predicting the location of solid-liquid interface in an axi-symmetric configuration during both melting and solidification in a Latent Heat Storage Unit (LHSU). Development of analytical solutions for predicting the location of the solid-liquid interface is often intractable in LHSU due to non-linear temperature distribution in the Phase Change Material (PCM). This is further complicated by the moving boundary problem with free convection within the liquid phase of the PCM. Analytical solutions available in the contemporary literature are based on simplified transient heat conduction models and often fail to reliably predict the charging and discharging time constants for LHSU with complex configurations. This study is designed with the goal of developing more sophisticated numerical models for the estimation of transient thermal performance of an LHSU with a simple configuration involving a shell and tube heat exchanger (HX). The LHSU utilized in this study is realized by integrating various types of Phase Change Materials (PCM) contained in the shell side of a HX. The LHSU is charged or discharged by pumping hot or cold fluids in the tube side of the HX (i.e., by pumping water at a fixed inlet temperature from a commercial chiller apparatus). This study enabled the characterization of the transient response of a LHSU subjected to conduction and forced convection heat transfer. The PCM used in this material was paraffin wax (PURETEMP 29). The HX in the LHSU consisted of a single pass straight tube (½ inch copper pipe) mounted within a single shell configuration. The shell was fabricated from plastic material using additive manufacturing (i.e., “3D Printing”). The temperature variation during melting and solidification of the PCM were measured at different radial and axial locations within the cylindrical shell that was mounted vertically. Temperature measurements were performed at different mass flowrate ranging from 0.004 Kg/sec to 0.007 Kg/sec for the same fluid temperature. The water bath temperatures were maintained at a constant temperature of 40°C for melting and 15°C for solidification. The experiment results show that the transient response of the LHSU for charging and discharging (i.e., time required for melting and solidification of the PCM) vary significantly. Comparison of the experimental data with analytical results (involving quasi-stationary models for phase change) demonstrate that natural convection is the dominant mode during the melting process, while conduction is the dominant mode during the solidification process.


2015 ◽  
Vol 36 (10-11) ◽  
pp. 2897-2915 ◽  
Author(s):  
Soumaya Kadri ◽  
Belgacem Dhifaoui ◽  
Yvan Dutil ◽  
Sadok Ben Jabrallah ◽  
Daniel R. Rousse

Sign in / Sign up

Export Citation Format

Share Document