A New Insight Into the Grünwald–Letnikov Discrete Fractional Calculus

Author(s):  
Yiheng Wei ◽  
Weidi Yin ◽  
Yanting Zhao ◽  
Yong Wang

The primary work of this paper is to investigate some potential properties of Grünwald–Letnikov discrete fractional calculus. By employing a concise and convenient description, this paper not only establishes excellent relationships between fractional difference/sum and the integer order case but also generalizes the Z-transform and convolution operation.

Fractals ◽  
2021 ◽  
pp. 2240026
Author(s):  
SAIMA RASHID ◽  
SOBIA SULTANA ◽  
YELIZ KARACA ◽  
AASMA KHALID ◽  
YU-MING CHU

In this paper, some attempts have been devoted to investigating the dynamic features of discrete fractional calculus (DFC). To date, discrete fractional systems with complex dynamics have attracted the most consideration. By considering discrete [Formula: see text]-proportional fractional operator with nonlocal kernel, this study contributes to the major consequences of the certain novel versions of reverse Minkowski and related Hölder-type inequalities via discrete [Formula: see text]-proportional fractional sums, as presented. The proposed system has an intriguing feature not investigated in the literature so far, it is characterized by the nabla [Formula: see text] fractional sums. Novel special cases are reported with the intention of assessing the dynamics of the system, as well as to highlighting the several existing outcomes. In terms of applications, we can employ the derived consequences to investigate the existence and uniqueness of fractional difference equations underlying worth problems. Finally, the projected method is efficient in analyzing the complexity of the system.


2015 ◽  
Vol 9 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Ferhan Atici ◽  
Meltem Uyanik

In this paper, we introduce two new monotonicity concepts for a nonnegative or nonpositive valued function defined on a discrete domain. We give examples to illustrate connections between these new monotonicity concepts and the traditional ones. We then prove some monotonicity criteria based on the sign of the fractional difference operator of a function f, ??f with 0 < ? < 1. As an application, we state and prove the mean value theorem on discrete fractional calculus.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Saima Rashid ◽  
Hijaz Ahmad ◽  
Aasma Khalid ◽  
Yu-Ming Chu

Discrete fractional calculus ℱ C is proposed to depict neural systems with memory impacts. This research article aims to investigate the consequences in the frame of the discrete proportional fractional operator. ℏ -discrete exponential functions are assumed in the kernel of the novel generalized fractional sum defined on the time scale ℏ ℤ . The nabla ℏ -fractional sums are accounted in particular. The governing high discretization of problems is an advanced version of the existing forms that can be transformed into linear and nonlinear difference equations using appropriately adjusted transformations invoking property of observing the new chaotic behaviors of the logistic map. Based on the theory of discrete fractional calculus, explicit bounds for a class of positive functions n n ∈ ℕ concerned are established. These variants can be utilized as a convenient apparatus in the qualitative analysis of solutions of discrete fractional difference equations. With respect to applications, we can apply the introduced outcomes to explore boundedness, uniqueness, and continuous reliance on the initial value problem for the solutions of certain underlying worth problems of fractional difference equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Fahd Jarad ◽  
Kenan Taş

In this paper, starting from the definition of the Sumudu transform on a general time scale, we define the generalized discrete Sumudu transform and present some of its basic properties. We obtain the discrete Sumudu transform of Taylor monomials, fractional sums, and fractional differences. We apply this transform to solve some fractional difference initial value problems.


2018 ◽  
Vol 21 (2) ◽  
pp. 354-375 ◽  
Author(s):  
Guo–Cheng Wu ◽  
Dumitru Baleanu

AbstractWe revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fractional calculus. A class of impulsive fractional difference equations are proposed. A discrete comparison principle is given and asymptotic stability of nonlinear fractional difference equation are discussed. Finally, an impulsive Mittag–Leffler stability is defined. The numerical result is provided to support the analysis.


2021 ◽  
Vol 5 (3) ◽  
pp. 116
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Kadir Hamasalh

The discrete delta Caputo-Fabrizio fractional differences and sums are proposed to distinguish their monotonicity analysis from the sense of Riemann and Caputo operators on the time scale Z. Moreover, the action of Q− operator and discrete delta Laplace transform method are also reported. Furthermore, a relationship between the discrete delta Caputo-Fabrizio-Caputo and Caputo-Fabrizio-Riemann fractional differences is also studied in detail. To better understand the dynamic behavior of the obtained monotonicity results, the fractional difference mean value theorem is derived. The idea used in this article is readily applicable to obtain monotonicity analysis of other discrete fractional operators in discrete fractional calculus.


Fractals ◽  
2021 ◽  
pp. 2140038
Author(s):  
HUA KONG ◽  
GUANG YANG ◽  
CHENG LUO

This paper suggests two fractional differences for aftershock modeling with heavy tails. Discrete fractional calculus is a straightforward tool on isolated time scale. On the other hand, the fractional difference also can be derived by standard finite difference method when the difference formula is convergent. The two methods are both adopted and compared in the results. The unknown parameters are determined by use of the least square method where Ya’an earthquake aftershock data is used. It is reported that the discrete fractional calculus is an exact discretization tool without any loss in the memory effects which leads to better results.


2020 ◽  
Vol 40 (5) ◽  
pp. 549-568
Author(s):  
Said Rezk Grace ◽  
Jehad Alzabut ◽  
Sakthivel Punitha ◽  
Velu Muthulakshmi ◽  
Hakan Adıgüzel

In this paper, we study the nonoscillatory behavior of three classes of fractional difference equations. The investigations are presented in three different folds. Unlike most existing nonoscillation results which have been established by employing Riccati transformation technique, we employ herein an easily verifiable approach based on the fractional Taylor's difference formula, some features of discrete fractional calculus and mathematical inequalities. The theoretical findings are demonstrated by examples. We end the paper by a concluding remark.


2016 ◽  
Vol 26 (01) ◽  
pp. 1650013 ◽  
Author(s):  
Guo-Cheng Wu ◽  
Dumitru Baleanu ◽  
He-Ping Xie ◽  
Sheng-Da Zeng

Discrete fractional calculus is suggested in diffusion modeling in porous media. A variable-order fractional diffusion equation is proposed on discrete time scales. A function of the variable order is constructed by a chaotic map. The model shows some new random behaviors in comparison with other variable-order cases.


Sign in / Sign up

Export Citation Format

Share Document