scholarly journals The Prorenin and (Pro)renin Receptor: New Players in the Brain Renin-Angiotensin System?

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Wencheng Li ◽  
Hua Peng ◽  
Dale M. Seth ◽  
Yumei Feng

It is well known that the brain renin-angiotensin (RAS) system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang) II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (pro)renin receptor (PRR), a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.

1983 ◽  
Vol 244 (4) ◽  
pp. H471-H478 ◽  
Author(s):  
S. Takishita ◽  
C. M. Ferrario

Sodium and the renin-angiotensin system (RAS) participate in the regulation of cardiovascular function, in part via activation of central nervous system (CNS) mechanisms. Because intraventricular (IVT) administration of either hypertonic sodium chloride (NaCl) or angiotensin II (ANG II) elicits similar effects (i.e., natriuresis, hypertension, increased drinking, and enhanced vasopressin release) a common and final pathway may be involved. With this in mind, we measured the effect of an IVT injection (third or lateral ventricle) of 0.6 M NaCl on postganglionic renal nerve activity (RNA) and blood pressure in morphine-pentobarbital-anesthetized dogs before and after blockade of the brain RAS with either captopril or [Sar1,Ile8]ANG II. Both vagus and carotid sinus nerves were cut to avoid impingement of the baroreceptor reflex on the measured variables. IVT injection of 0.6 M NaCl produced a prominent hypertensive response and tachycardia associated with a 59 +/- 9% increase in RNA. These changes were statistically significant (P less than 0.001), correlated with each other, and were abolished by administration of hexamethonium chloride (10 mg/kg iv). Blockade of central ANG II receptors with [Sar1,Ile8]ANG II was without effect. However, in dogs given IVT SQ 14,225, there was a slight increase in baseline RNA before injection of 0.6 M NaCl; in addition, both the pressor and heart rate responses to the stimulus of hypertonic NaCl were further augmented. These results demonstrate that central administration of hypertonic NaCl in baroreceptor-denervated dogs produces marked activation of sympathetic nerve activity via mechanisms other than activation of the brain RAS.


2001 ◽  
Vol 281 (6) ◽  
pp. R1854-R1861 ◽  
Author(s):  
Raynald Bergeron ◽  
Michael Kjær ◽  
Lene Simonsen ◽  
Jens Bülow ◽  
Dorthe Skovgaard ◽  
...  

The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O2 consumption (V˙o 2 max) followed by 30 min at 70% V˙o 2 maxeither with [angiotensin-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an ∼20-fold increase ( P < 0.001) in ANG II levels in the control group (5.4 ± 1.0 to 102.0 ± 25.1 pg/ml), whereas this response was blunted during ACE blockade (8.1 ± 1.2 to 13.2 ± 2.4 pg/ml) and in response to an orthostatic challenge performed postexercise. Apart from lactate and cortisol, which were higher in the ACE-blockade group vs. the control group, hormones, metabolites, V˙o 2, and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 ± 0.12, ACE blockade; 1.59 ± 0.18 l/min, control) decreased during moderate exercise (0.78 ± 0.07, ACE blockade; 0.74 ± 0.14 l/min, control), whereas splanchnic glucose production (at rest: 0.50 ± 0.06, ACE blockade; 0.68 ± 0.10 mmol/min, control) increased during moderate exercise (1.97 ± 0.29, ACE blockade; 1.91 ± 0.41 mmol/min, control). Refuting a major role of the RAS for these responses, no differences in the pattern of change of splanchnic blood flow and splanchnic glucose production were observed during ACE blockade compared with controls. This study demonstrates that the normal increase in ANG II levels observed during prolonged exercise in humans does not play a major role in the regulation of splanchnic blood flow and glucose production.


2020 ◽  
Vol 319 (4) ◽  
pp. L596-L602
Author(s):  
Rodrigo Pacheco Silva-Aguiar ◽  
Diogo Barros Peruchetti ◽  
Patricia Rieken Macedo Rocco ◽  
Alvin H. Schmaier ◽  
Patrícia Machado Rodrigues e Silva ◽  
...  

A new form of severe acute respiratory syndrome (SARS) caused by SARS-coronavirus 2 (CoV-2), called COVID-19, has become a global threat in 2020. The mortality rate from COVID-19 is high in hypertensive patients, making this association especially dangerous. There appears to be a consensus, despite the lack of experimental data, that angiotensin II (ANG II) is linked to the pathogenesis of COVID-19. This process may occur due to acquired deficiency of angiotensin-converting enzyme 2 (ACE2), resulting in reduced degradation of ANG II. Furthermore, ANG II has a critical role in the genesis and worsening of hypertension. In this context, the idea that there is a surge in the level of ANG II with COVID-19 infection, causing multiple organ injuries in hypertensive patients becomes attractive. However, the role of other components of the renin angiotensin system (RAS) in this scenario requires elucidation. The identification of other RAS components in COVID-19 hypertension may provide both diagnostic and therapeutic benefits. Here, we summarize the pathophysiologic contributions of different components of RAS in hypertension and their possible correlation with poor outcome observed in hypertensive patients with COVID-19.


1991 ◽  
Vol 260 (3) ◽  
pp. H770-H778 ◽  
Author(s):  
P. K. Dorward ◽  
C. D. Rudd

The role of the brain renin-angiotensin system (RAS) in the baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) was studied in conscious rabbits. RSNA and HR were recorded during slow ramp changes in mean arterial pressure (MAP) before and after intraventricular infusion of 1) angiotensin II (ANG II), 2) ANG II receptor antagonist, [Sar1,Ile8]ANG II, or 3) converting enzyme inhibitor (CEI, enalaprilat). Central ANG II increased resting MAP and RSNA by 10.6 +/- 0.9 mmHg and 21 +/- 7%, respectively, but did not alter HR. There was a marked increase of 107 +/- 15% in the maximum RSNA evoked by slowly lowering MAP. In contrast, maximum reflex tachycardia was only modestly elevated, and baroreflex inhibition of RSNA and HR during MAP rises was unaffected. Central [Sar1,Ile8]ANG II had no effect on RSNA or HR, either at rest or during baroreflex responses, while CEI slightly enhanced maximal reflex responses. Thus exogenous ANG II causes a powerful excitation of renal sympathetic motoneurons, the magnitude of which is revealed when tonic baroreceptor inhibition is removed during transient pressure falls. However, in quietly resting conscious rabbits, we found no evidence for a tonic influence of endogenous ANG II on these neurons, and the physiological stimuli required for their activation by the brain RAS remain to be found.


2008 ◽  
Vol 294 (1) ◽  
pp. R26-R32 ◽  
Author(s):  
J. C. B. Ferreira ◽  
A. V. Bacurau ◽  
F. S. Evangelista ◽  
M. A. Coelho ◽  
E. M. Oliveira ◽  
...  

Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking α2A and α2C adrenoceptor knockout (α2A/α2CARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, α2A/α2CARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, α2A/α2CARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT1 receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.


Sign in / Sign up

Export Citation Format

Share Document