Influence of brain renin-angiotensin system on renal sympathetic and cardiac baroreflexes in conscious rabbits

1991 ◽  
Vol 260 (3) ◽  
pp. H770-H778 ◽  
Author(s):  
P. K. Dorward ◽  
C. D. Rudd

The role of the brain renin-angiotensin system (RAS) in the baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) was studied in conscious rabbits. RSNA and HR were recorded during slow ramp changes in mean arterial pressure (MAP) before and after intraventricular infusion of 1) angiotensin II (ANG II), 2) ANG II receptor antagonist, [Sar1,Ile8]ANG II, or 3) converting enzyme inhibitor (CEI, enalaprilat). Central ANG II increased resting MAP and RSNA by 10.6 +/- 0.9 mmHg and 21 +/- 7%, respectively, but did not alter HR. There was a marked increase of 107 +/- 15% in the maximum RSNA evoked by slowly lowering MAP. In contrast, maximum reflex tachycardia was only modestly elevated, and baroreflex inhibition of RSNA and HR during MAP rises was unaffected. Central [Sar1,Ile8]ANG II had no effect on RSNA or HR, either at rest or during baroreflex responses, while CEI slightly enhanced maximal reflex responses. Thus exogenous ANG II causes a powerful excitation of renal sympathetic motoneurons, the magnitude of which is revealed when tonic baroreceptor inhibition is removed during transient pressure falls. However, in quietly resting conscious rabbits, we found no evidence for a tonic influence of endogenous ANG II on these neurons, and the physiological stimuli required for their activation by the brain RAS remain to be found.

1983 ◽  
Vol 244 (4) ◽  
pp. H471-H478 ◽  
Author(s):  
S. Takishita ◽  
C. M. Ferrario

Sodium and the renin-angiotensin system (RAS) participate in the regulation of cardiovascular function, in part via activation of central nervous system (CNS) mechanisms. Because intraventricular (IVT) administration of either hypertonic sodium chloride (NaCl) or angiotensin II (ANG II) elicits similar effects (i.e., natriuresis, hypertension, increased drinking, and enhanced vasopressin release) a common and final pathway may be involved. With this in mind, we measured the effect of an IVT injection (third or lateral ventricle) of 0.6 M NaCl on postganglionic renal nerve activity (RNA) and blood pressure in morphine-pentobarbital-anesthetized dogs before and after blockade of the brain RAS with either captopril or [Sar1,Ile8]ANG II. Both vagus and carotid sinus nerves were cut to avoid impingement of the baroreceptor reflex on the measured variables. IVT injection of 0.6 M NaCl produced a prominent hypertensive response and tachycardia associated with a 59 +/- 9% increase in RNA. These changes were statistically significant (P less than 0.001), correlated with each other, and were abolished by administration of hexamethonium chloride (10 mg/kg iv). Blockade of central ANG II receptors with [Sar1,Ile8]ANG II was without effect. However, in dogs given IVT SQ 14,225, there was a slight increase in baseline RNA before injection of 0.6 M NaCl; in addition, both the pressor and heart rate responses to the stimulus of hypertonic NaCl were further augmented. These results demonstrate that central administration of hypertonic NaCl in baroreceptor-denervated dogs produces marked activation of sympathetic nerve activity via mechanisms other than activation of the brain RAS.


2014 ◽  
Vol 307 (1) ◽  
pp. H25-H32 ◽  
Author(s):  
Matthew J. Durand ◽  
Shane A. Phillips ◽  
Michael E. Widlansky ◽  
Mary F. Otterson ◽  
David D. Gutterman

Increased intraluminal pressure can reduce endothelial function in resistance arterioles; however, the mechanism of this impairment is unknown. The purpose of this study was to determine the effect of local renin-angiotensin system inhibition on the pressure-induced blunting of endothelium-dependent vasodilation in human adipose arterioles. Arterioles (100–200 μm) were dissected from fresh adipose surgical specimens, cannulated onto glass micropipettes, pressurized to an intraluminal pressure of 60 mmHg, and constricted with endothelin-1. Vasodilation to ACh was assessed at 60 mmHg and again after a 30-min exposure to an intraluminal pressure of 150 mmHg. The vasodilator response to ACh was significantly reduced in vessels exposed to 150 mmHg. Exposure of the vessels to the superoxide scavenger polyethylene glycol-SOD (100 U/ml), the ANG II type 1 receptor antagonist losartan (10−6 mol/l), or the angiotensin-converting enzyme inhibitor captopril (10−5 mol/l) prevented the pressure-induced reduction in ACh-dependent vasodilation observed in untreated vessels. High intraluminal pressure had no effect on papaverine-induced vasodilation or ANG II sensitivity. Increased intraluminal pressure increased dihydroethidium fluorescence in cannulated vessels, which could be prevented by polyethylene glycol-SOD or losartan treatment and endothelial denudation. These data indicate that high intraluminal pressure can increase vascular superoxide and reduce nitric oxide-mediated vasodilation via activation of the vascular renin-angiotensin system. This study provides evidence showing that the local renin-angiotensin system in the human microvasculature may be pressure sensitive and contribute to endothelial dysfunction after acute bouts of hypertension.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Wencheng Li ◽  
Hua Peng ◽  
Dale M. Seth ◽  
Yumei Feng

It is well known that the brain renin-angiotensin (RAS) system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang) II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (pro)renin receptor (PRR), a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Guo-Biao Wu ◽  
Hui-Bo Du ◽  
Jia-Yi Zhai ◽  
Si Sun ◽  
Jun-Ling Cui ◽  
...  

Hemorrhagic shock is associated with activation of renin-angiotensin system (RAS) and endoplasmic reticulum stress (ERS). Previous studies demonstrated that central RAS activation produced by various challenges sensitizes angiotensin (Ang) II-elicited hypertension and that ERS contributes to the development of neurogenic hypertension. The present study investigated whether controlled hemorrhage could sensitize Ang II-elicited hypertension and whether the brain RAS and ERS mediate this sensitization. Results showed that hemorrhaged (HEM) rats had a significantly enhanced hypertensive response to a slow-pressor infusion of Ang II when compared to sham HEM rats. Treatment with either angiotensin-converting enzyme (ACE) 1 inhibitor, captopril, or ACE2 activator, diminazene, abolished the HEM-induced sensitization of hypertension. Treatment with the ERS agonist, tunicamycin, in sham HEM rats also sensitized Ang II-elicited hypertension. However, blockade of ERS with 4-phenylbutyric acid in HEM rats did not alter HEM-elicited sensitization of hypertension. Either HEM or ERS activation produced a greater reduction in BP after ganglionic blockade, upregulated mRNA and protein expression of ACE1 in the hypothalamic paraventricular nucleus (PVN), and elevated plasma levels of Ang II but reduced mRNA expression of the Ang-(1-7) receptor, Mas-R, and did not alter plasma levels of Ang-(1-7). Treatment with captopril or diminazene, but not phenylbutyric acid, reversed these changes. No treatments had effects on PVN protein expression of the ERS marker glucose-regulated protein 78. The results indicate that controlled hemorrhage sensitizes Ang II-elicited hypertension by augmenting RAS prohypertensive actions and reducing RAS antihypertensive effects in the brain, which is independent of ERS mechanism.


1999 ◽  
Vol 160 (3) ◽  
pp. 351-363 ◽  
Author(s):  
NJ Bernier ◽  
H Kaiya ◽  
Y Takei ◽  
SF Perry

The individual contributions of, and potential interactions between, the renin-angiotensin system (RAS) and the humoral adrenergic stress response to blood pressure regulation were examined in rainbow trout. Intravenous injection of the smooth muscle relaxant, papaverine (10 mg/kg), elicited a transient decrease in dorsal aortic blood pressure (PDA) and systemic vascular resistance (RS), and significant increases in plasma angiotensin II (Ang II) and catecholamine concentrations. Blockade of alpha-adrenoceptors before papaverine treatment prevented PDA and RS recovery, had no effect on the increase in plasma catecholamines, and resulted in greater plasma Ang II concentrations. Administration of the angiotensin-converting enzyme inhibitor, lisinopril (10(-4) mol/kg), before papaverine treatment attenuated the increases in the plasma concentrations of Ang II, adrenaline, and noradrenaline by 90, 79, and 40%, respectively and also prevented PDA and RS recovery. By itself, lisinopril treatment caused a gradual and sustained decrease in PDA and RS, and reductions in basal plasma Ang II and adrenaline concentrations. Bolus injection of a catecholamine cocktail (4 nmol/kg noradrenaline plus 40 nmol/kg adrenaline) in the lisinopril+papaverine-treated trout, to supplement their circulating catecholamine concentrations and mimic those observed in fish treated only with papaverine, resulted in a temporary recovery in PDA and RS. These results indicate that the RAS and the acute humoral adrenergic response are both recruited during an acute hypotensive stress, and have important roles in the compensatory response to hypotension in rainbow trout. However, whereas the contribution of the RAS to PDA recovery is largely indirect and relies on an Ang II-mediated secretion of catecholamines, the contribution from the adrenergic system is direct and relies at least in part on plasma catecholamines.


1993 ◽  
Vol 264 (3) ◽  
pp. F510-F514
Author(s):  
R. Morishita ◽  
J. Higaki ◽  
H. Okunishi ◽  
F. Nakamura ◽  
M. Nagano ◽  
...  

To investigate the molecular pathology of two-kidney, one-clip (2K-1C) rats, we examined the gene expressions of the renin-angiotensin system (RAS) and angiotensin II (ANG II) concentration in various tissues in the early (4 wk) and chronic (16 wk) phases of hypertension. Four weeks after clipping, the brain renin mRNA level was lower in 2K-1C rats than in control rats (P < 0.05). On the other hand, the levels of brain and renal angiotensinogen mRNA were not significantly different in the two groups. The brain and adrenal ANG II concentrations were significantly higher in 2K-1C rats than in control rats. Sixteen weeks after clipping, there was no significant difference in the brain renin mRNA levels in the two groups, and renal and brain angiotensinogen mRNA levels were normal. Moreover, the ANG II concentrations in the adrenals and brain (except the cortex) of 2K-1C rats were not significantly higher than those in control rats. These results show a differential pattern of tissue RAS gene expression in rats during the development of 2K-1C hypertension, which is regulated in a tissue-specific manner. Furthermore, the data suggest that brain ANG II may be affected by circulating ANG II, but not by the brain renin angiotensin system, and may regulate brain renin, probably by negative feedback through its own receptor.


2018 ◽  
Vol 98 (1) ◽  
pp. 505-553 ◽  
Author(s):  
Robson Augusto Souza Santos ◽  
Walkyria Oliveira Sampaio ◽  
Andreia C. Alzamora ◽  
Daisy Motta-Santos ◽  
Natalia Alenina ◽  
...  

The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1–7)/MAS, whose end point is the metabolite ANG-(1–7). ACE2 and other enzymes can form ANG-(1–7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1–7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1–7) in physiology and disease, with particular emphasis on the brain.


2012 ◽  
Vol 113 (12) ◽  
pp. 1929-1936 ◽  
Author(s):  
Amy C. Arnold ◽  
Atsushi Sakima ◽  
Sherry O. Kasper ◽  
Sherry Vinsant ◽  
Maria Antonia Garcia-Espinosa ◽  
...  

The renin-angiotensin system (RAS) has been identified as an attractive target for the treatment of stress-induced cardiovascular disorders. The effects of angiotensin (ANG) peptides during stress responses likely result from an integration of actions by circulating peptides and brain peptides derived from neuronal and glial sources. The present review focuses on the contribution of endogenous brain ANG peptides to pathways involved in cardiovascular responses to stressors. During a variety of forms of stress, neuronal pathways in forebrain areas containing ANG II or ANG-(1–7) are activated to stimulate descending angiotensinergic pathways that increase sympathetic outflow to increase blood pressure. We provide evidence that glia-derived ANG peptides influence brain AT1 receptors. This appears to result in modulation of the responsiveness of the neuronal pathways activated during stressors that elevate circulating ANG peptides to activate brain pathways involving descending hypothalamic projections. It is well established that increased cardiovascular reactivity to stress is a significant predictor of hypertension and other cardiovascular diseases. This review highlights the importance of understanding the impact of RAS components from the circulation, neurons, and glia on the integration of cardiovascular responses to stressors.


1996 ◽  
Vol 270 (1) ◽  
pp. H275-H280 ◽  
Author(s):  
B. S. Huang ◽  
F. H. Leenen

Intracerebroventricular administration of hypertonic saline, ouabain, brain ouabainlike activity (OLA), or angiotensin II (ANG II) causes sympathoexcitatory and pressor effects in rats. To clarify the possible interaction between increased brain sodium, brain OLA, and the brain renin-angiotensin system (RAS), increases in mean arterial pressure, heart rate (HR), and renal sympathetic nerve activity (RSNA) in response to intracerebroventricular 0.3 M NaCl, ouabain, and ANG II were recorded in conscious Wistar rats before and after intracerebroventricular pretreatment with the angiotensin-receptor (AT1) blocker losartan, antibody Fab fragments (Digibind), or, as control, gamma-globulins. These Fab fragments bind ouabain and brain OLA with high affinity. The arginine vasopressin (AVP) antagonist [d(CH2)5Tyr(Me)]AVP (30 micrograms/ kg) was injected intravenously before each intracerebroventricular injection. Intracerebroventricularly administered 0.3 M NaCl (3.8 mul/min for 10 min), ouabain (0.3 and 0.6 microgram), and ANG II (10 and 30 ng) caused similar pressor responses. However, the extent of HR and RSNA responses to ANG II was smaller than those to 0.3 M NaCl and ouabain. Intracerebroventricular losartan (10 and 20 micrograms) blocked responses to ANG II and 0.3 M NaCl and significantly attenuated the responses to ouabain (pressor response by 50-70%; RSNA and HR by 60-80%). In contrast, intracerebroventricular Fab fragments (66 micrograms) blocked only the responses to 0.3 M NaCl and ouabain and did not affect the responses to ANG II. These results suggest that an acute rise in brain sodium concentration increases brain OLA and the latter exerts its sympathoexcitatory and pressor effects at least partly via activation of the brain RAS.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Manisha Nautiyal ◽  
Amy C. Arnold ◽  
Mark C. Chappell ◽  
Debra I. Diz

Mitochondrial dysfunction is implicated in many cardiovascular diseases, including hypertension, and may be associated with an overactive renin-angiotensin system (RAS). Angiotensin (Ang) II, a potent vasoconstrictor hormone of the RAS, also impairs baroreflex and mitochondrial function. Most deleterious cardiovascular actions of Ang II are thought to be mediated by NADPH-oxidase- (NOX-) derived reactive oxygen species (ROS) that may also stimulate mitochondrial oxidant release and alter redox-sensitive signaling pathways in the brain. Within the RAS, the actions of Ang II are counterbalanced by Ang-(1–7), a vasodilatory peptide known to mitigate against increased oxidant stress. A balance between Ang II and Ang-(1–7) within the brain dorsal medulla contributes to maintenance of normal blood pressure and proper functioning of the arterial baroreceptor reflex for control of heart rate. We propose that Ang-(1–7) may negatively regulate the redox signaling pathways activated by Ang II to maintain normal blood pressure, baroreflex, and mitochondrial function through attenuating ROS (NOX-generated and/or mitochondrial).


Sign in / Sign up

Export Citation Format

Share Document