scholarly journals A Note on Impulsive Fractional Evolution Equations with Nondense Domain

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Zufeng Zhang ◽  
Bin Liu

This paper is concerned with the existence of integral solutions for nondensely defined fractional functional differential equations with impulse effects. Some errors in the existing paper concerned with nondensely defined fractional differential equations are pointed out, and correct formula of integral solutions is established by using integrated semigroup and some probability densities. Sufficient conditions for the existence are obtained by applying the Banach contraction mapping principle. An example is also given to illustrate our results.

2008 ◽  
Vol 01 (04) ◽  
pp. 449-468 ◽  
Author(s):  
Nadjet Abada ◽  
Ravi P. Agarwal ◽  
Mouffak Benchohra ◽  
Hadda Hammouche

In this paper, we shall establish sufficient conditions for the existence of integral solutions for some nondensely defined impulsive semilinear functional differential equations with state-dependent delay in separable Banach spaces. We shall rely on a fixed point theorem for the sum of completely continuous and contraction operators.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1095
Author(s):  
Clemente Cesarano ◽  
Osama Moaaz ◽  
Belgees Qaraad ◽  
Nawal A. Alshehri ◽  
Sayed K. Elagan ◽  
...  

Differential equations with delay arguments are one of the branches of functional differential equations which take into account the system’s past, allowing for more accurate and efficient future prediction. The symmetry of the equations in terms of positive and negative solutions plays a fundamental and important role in the study of oscillation. In this paper, we study the oscillatory behavior of a class of odd-order neutral delay differential equations. We establish new sufficient conditions for all solutions of such equations to be oscillatory. The obtained results improve, simplify and complement many existing results.


2021 ◽  
pp. 1-11
Author(s):  
Jian Wang ◽  
Yuanguo Zhu

Uncertain delay differential equation is a class of functional differential equations driven by Liu process. It is an important model to describe the evolution process of uncertain dynamical system. In this paper, on the one hand, the analytic expression of a class of linear uncertain delay differential equations are investigated. On the other hand, the new sufficient conditions for uncertain delay differential equations being stable in measure and in mean are presented by using retarded-type Gronwall inequality. Several examples show that our stability conditions are superior to the existing results.


2011 ◽  
Vol 18 (3) ◽  
pp. 577-586
Author(s):  
Zaza Sokhadze

Abstract The sufficient conditions of well-posedness of the weighted Cauchy problem for higher order linear functional differential equations with deviating arguments, whose coefficients have nonintegrable singularities at the initial point, are found.


1985 ◽  
Vol 101 (3-4) ◽  
pp. 253-271 ◽  
Author(s):  
O. A. Arino ◽  
T. A. Burton ◽  
J. R. Haddock

SynopsisWe consider a system of functional differential equationswhere G: R × B → Rn is T periodic in t and B is a certain phase space of continuous functions that map (−∞, 0[ into Rn. The concepts of B-uniform boundedness and B-uniform ultimate boundedness are introduced, and sufficient conditions are given for the existence of a T-periodic solution to (1.1). Several examples are given to illustrate the main theorem.


2018 ◽  
Vol 68 (6) ◽  
pp. 1385-1396 ◽  
Author(s):  
Arun Kumar Tripathy ◽  
Rashmi Rekha Mohanta

Abstract In this paper, several sufficient conditions for oscillation of all solutions of fourth order functional differential equations of neutral type of the form $$\begin{array}{} \displaystyle \bigl(r(t)(y(t)+p(t)y(t-\tau))''\bigr)''+q(t)G\bigl(y(t-\sigma)\bigr)=0 \end{array}$$ are studied under the assumption $$\begin{array}{} \displaystyle \int\limits^{\infty}_{0}\frac{t}{r(t)}{\rm d} t =\infty \end{array}$$


Sign in / Sign up

Export Citation Format

Share Document