scholarly journals Solution-Processed Nanowire Coating for Light Management in Organic Solar Cells

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
K. Tsuboi ◽  
T. Fukawa ◽  
Y. Konosu ◽  
H. Matsumoto ◽  
A. Tanioka

We report a novel light management approach based on solution-processed nanowire (NW) coating for enhancing organic solar cell efficiency. A titanium dioxide (TiO2) NW dispersion was produced by electrospinning. The coatings with various coverage fractions were fabricated by a simple solution casting of a TiO2NW dispersion. Reduced reflectivity was observed for the NW-coated glass slide. The bulk-heterojunction organic solar cells with the NW coating showed improved power conversion efficiencies (PCEs) due to their antireflection and light trapping effects in the active layer. In addition, the PCE of the cell with the NW coating was improved compared with that without the NW coating for incident angles above 70° (increased by a maximum of 51.6% at an incident angle of 85°). These results indicate that solution-processed NW coating is a promising light management approach easily scalable and applicable to a wide range of devices, including solar cells.

RSC Advances ◽  
2015 ◽  
Vol 5 (9) ◽  
pp. 6286-6293 ◽  
Author(s):  
M. Nazim ◽  
Sadia Ameen ◽  
M. Shaheer Akhtar ◽  
Hyung-Kee Seo ◽  
Hyung-Shik Shin

Novel furan-bridged thiazolo[5,4-d]thiazole based π-conjugated organic chromophore (RFTzR) was formulated and utilized for the fabrication of solution-processed small molecule organic solar cells (SMOSCs).


2020 ◽  
Vol 10 (17) ◽  
pp. 5743
Author(s):  
Shabaz Alam ◽  
M. Shaheer Akhtar ◽  
Abdullah ◽  
Eun-Bi Kim ◽  
Hyung-Shik Shin ◽  
...  

A new and effective planar D-π-A configured small organic molecule (SOM) of 2-5-(3,5-dimethoxystyryl)thiophen-2-yl)methylene)-1H-indene-1,3(2H)-dione, abbreviated as DVB-T-ID, was synthesized using 1,3-indanedione acceptor and dimethoxy vinylbenzene donor units, connected through a thiophene π-spacer. The presence of a dimethoxy vinylbenzene unit and π-spacer in DVB-T-ID significantly improved the absorption behavior by displaying maximum absorbance at ~515 nm, and the reasonable band gap was estimated as ~2.06 eV. The electronic properties revealed that DVB-T-ID SOMs exhibited promising HOMO (−5.32 eV) and LUMO (−3.26 eV). The synthesized DVB-T-ID SOM was utilized as donor material for fabricating solution-processed bulk heterojunction organic solar cells (BHJ-OSCs) and showed a reasonable power conversion efficiency (PCE) of ~3.1% with DVB-T-ID:PC61BM (1:2, w/w) active layer. The outcome of this work clearly reflects that synthesized DVB-T-ID based on 1,3-indanedione units is a promising absorber (donor) material for BHJ-OSCs.


2020 ◽  
Vol 44 (14) ◽  
pp. 12100-12111
Author(s):  
Abdullah ◽  
Eun‐Bi Kim ◽  
M. Shaheer Akhtar ◽  
Hyung‐Shik Shin ◽  
Sadia Ameen

2015 ◽  
Vol 3 (24) ◽  
pp. 6209-6217 ◽  
Author(s):  
Ganesh D. Sharma ◽  
S. A. Siddiqui ◽  
Agapi Nikiforou ◽  
Galateia E. Zervaki ◽  
Irene Georgakaki ◽  
...  

A mono(carboxy)porphyrin-triazine-(bodipy)2triad(PorCOOH)(BDP)2has been used as a donor with ([6,6]-phenyl C71butyric acid methyl ester) (PC71BM) as an acceptor, in BHJ - solution processed organic solar cells.


RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 99685-99694 ◽  
Author(s):  
Yuvraj Patil ◽  
Rajneesh Misra ◽  
F. C. Chen ◽  
M. L. Keshtov ◽  
Ganesh D. Sharma

Two small molecules DPP3 (D–π–A) and DPP4 (D–π–A–π–D) with triphenylamine (TPA) donors and diketopyrrolopyrrole (DPP) acceptors linked with ethyne linkers were designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction.


2013 ◽  
Vol 4 ◽  
pp. 680-689 ◽  
Author(s):  
Gisela L Schulz ◽  
Marta Urdanpilleta ◽  
Roland Fitzner ◽  
Eduard Brier ◽  
Elena Mena-Osteritz ◽  
...  

The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu 4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu 4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu 4 :PC61BM solar cell with its vacuum-processed DCV5T-Bu 4 :C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.


2014 ◽  
Vol 24 (23) ◽  
pp. 3543-3550 ◽  
Author(s):  
Alexander Sharenko ◽  
Martijn Kuik ◽  
Michael F. Toney ◽  
Thuc-Quyen Nguyen

Sign in / Sign up

Export Citation Format

Share Document