scholarly journals Nonequilibrium Thermodynamics of Cell Signaling

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Enrique Hernández-Lemus

Signal transduction inside and across the cells, also called cellular signaling, is key to most biological functions and is ultimately related with both life and death of the organisms. The processes giving rise to the propagation of biosignals are complex and extremely cooperative and occur in a far-from thermodynamic equilibrium regime. They are also driven by activation kinetics strongly dependent on local energetics. For these reasons, a nonequilibrium thermodynamical description, taking into account not just the activation of second messengers, but also transport processes and dissipation is desirable. Here we present a proposal for such a formalism, that considers cells as small thermodynamical systems and incorporates the role of fluctuations as intrinsic to the dynamics in a spirit guided by mesoscopic nonequilibrium thermodynamics. We present also a minimal model for cellular signaling that includes contributions from activation, transport, and intrinsic fluctuations. We finally illustrate its feasibility by considering the case of FAS signaling which is a vital signal transduction pathway that determines either cell survival or death by apoptosis.

1994 ◽  
Vol 1 ◽  
pp. 80
Author(s):  
K. Tomita ◽  
A. Owada ◽  
H. Nonoguchi ◽  
Y. Terada ◽  
F. Marumo

1991 ◽  
Vol 5 (7) ◽  
pp. 2068-2077 ◽  
Author(s):  
Edward A. Dennis ◽  
Sue Goo Rhee ◽  
M. Motasim Billah ◽  
Yusuf A. Hannun

1990 ◽  
Vol 10 (2) ◽  
pp. 510-517
Author(s):  
G M Cole ◽  
D E Stone ◽  
S I Reed

The Saccharomyces cerevisiae GPA1, STE4, and STE18 genes encode products homologous to mammalian G-protein alpha, beta, and gamma subunits, respectively. All three genes function in the transduction of the signal generated by mating pheromone in haploid cells. To characterize more completely the role of these genes in mating, we have conditionally overexpressed GPA1, STE4, and STE18, using the galactose-inducible GAL1 promoter. Overexpression of STE4 alone, or STE4 together with STE18, generated a response in haploid cells suggestive of pheromone signal transduction: arrest in G1 of the cell cycle, formation of cellular projections, and induction of the pheromone-inducible transcript FUS1 25- to 70-fold. High-level STE18 expression alone had none of these effects, nor did overexpression of STE4 in a MATa/alpha diploid. However, STE18 was essential for the response, since overexpression of STE4 was unable to activate a response in a ste18 null strain. GPA1 hyperexpression suppressed the phenotype of STE4 overexpression. In addition, cells that overexpressed GPA1 were more resistant to pheromone and recovered more quickly from pheromone than did wild-type cells, which suggests that GPA1 may function in an adaptation response to pheromone.


Sign in / Sign up

Export Citation Format

Share Document