scholarly journals Diet-Induced Obesity in Mice Overexpressing Neuropeptide Y in Noradrenergic Neurons

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Suvi T. Ruohonen ◽  
Laura H. Vähätalo ◽  
Eriika Savontaus

Neuropeptide Y (NPY) is a neurotransmitter associated with feeding and obesity. We have constructed an NPY transgenic mouse model (OE- mouse), where targeted overexpression leads to increased levels of NPY in noradrenergic and adrenergic neurons. We previously showed that these mice become obese on a normal chow. Now we aimed to study the effect of a Western-type diet in OE- and wildtype (WT) mice, and to compare the genotype differences in the development of obesity, insulin resistance, and diabetes. Weight gain, glucose, and insulin tolerance tests, fasted plasma insulin, and cholesterol levels were assayed. We found that female OE- mice gained significantly more weight without hyperphagia or decreased activity, and showed larger white and brown fat depots with no difference in UCP-1 levels. They also displayed impaired glucose tolerance and decreased insulin sensitivity. OE- and WT males gained weight robustly, but no difference in the degree of adiposity was observed. However, 40% of but none of the WT males developed hyperglycaemia while on the diet. The present study shows that female OE- mice were not protected from the obesogenic effect of the diet suggesting that increased NPY release may predispose females to a greater risk of weight gain under high caloric conditions.

2010 ◽  
Vol 205 (3) ◽  
pp. 243-252 ◽  
Author(s):  
Kishor Devalaraja-Narashimha ◽  
Babu J Padanilam

Poly (ADP-ribose) polymerase-1 (PARP1) regulates gene expression as a transcriptional cofactor and protein functions via poly (ADP-ribosyl)ation. This study was aimed to determine the effect of Parp1 gene deficiency on diet-induced obesity and energy metabolism. Parp1-knockout (Parp-KO) and wild-type (WT) mice on the same genetic background were fed either normal chow or high-fat (HF) diet. Food intake and weight gain were monitored weekly. Plasma levels of glucose, leptin, and insulin were monitored monthly. At 19 weeks, locomotor activity, body composition, respiratory quotient and heat production, glucose and insulin tolerance, and fat reabsorption were analyzed. Parp-KO mice are highly susceptible to diet-induced obesity, accumulation of fat tissue, and they develop hyperleptinemia and insulin resistance and glucose intolerance compared with their WT counterparts. The increased weight gain is due to decreased metabolic rate, heat production, and total energy expenditure (EE). Paradoxically, food intake is less, and the motor activity and oxidation of fat are higher in Parp-KO mice. Absorption of fatty acids is not altered between the groups after HF diet. These results suggest that malfunction of PARP1 signaling exacerbates diet-induced obesity, hyperleptinemia, and insulin resistance, and that it decreases EE in 129 mice.


Folia Medica ◽  
2021 ◽  
Vol 63 (6) ◽  
pp. 895-900
Author(s):  
Eka Roina Megawati ◽  
Lokot Donna Lubis ◽  
Febi Yanti Harahap

Introduction: Obesity creates health problems by increasing the risks of chronic diseases such as type 2 diabetes and cardiovascular disorders. Obesity leads to insulin resistance, higher blood glucose and cholesterol levels. Adipose tissues synthesize adiponectin which acts as anti-inflammatory, antidiabetic, and anti-atherogenic agent. Meanwhile, vitamin E is an antioxidant that acts as an anti-inflammation. Aim: The purpose of this study was to analyze the effects of vitamin E supplementation to metabolic markers on diet-induced obesity in mice. Materials and methods: Twenty-four mice (Mus musculus, L) aged four weeks were divided into six groups which were fed different diets and given vitamin E in different dosages or methods. The period of treatment was 18 weeks. The mice body weights were measured every week; blood sugar and cholesterol levels were measured every six weeks, and the adiponectin level measurement was done at week 18. Results: A repeated measures ANOVA showed that body weight and cholesterol level within groups were not significantly different [F(15, 54)=1.417, 0.173 and F(10, 36)=1.391, 0.224 respectively]. The glucose levels were found to be significantly different [F(7.646, 27.526)=2.625, 0.030]. There was no significant difference in the adiponectin levels. Conclusions: Vitamin E supplementation could not prevent the increase of body weight, the elevation of blood sugar and cholesterol levels, and also could not increase adiponectin level.


2009 ◽  
Vol 32 (12) ◽  
pp. 2022-2028 ◽  
Author(s):  
Satomi Koya-Miyata ◽  
Norie Arai ◽  
Akiko Mizote ◽  
Yoshifumi Taniguchi ◽  
Shimpei Ushio ◽  
...  

2021 ◽  
Author(s):  
Anzela Niraula ◽  
Rachael D Fasnacht ◽  
Kelly M Ness ◽  
Jeremy M Frey ◽  
Mauricio D Dorfman ◽  
...  

Background: In rodents, susceptibility to diet-induced obesity requires microglial activation, but the molecular components of this pathway remain incompletely defined. Prostaglandin E2 (PGE2) levels increase in the mediobasal hypothalamus during high fat diet (HFD) feeding, and the PGE2 receptor EP4 regulates microglial activation state and phagocytic activity, suggesting a potential role for microglial EP4 signaling in obesity pathogenesis. Method: Metabolic phenotyping, as assessed by body weight, energy expenditure, glucose, and insulin tolerance, was performed in microglia-specific EP4 knockout (MG-EP4 KO) mice and littermate controls on HFD. Morphological and gene expression analysis of microglia, and a histological survey of microglia-neuron interactions in the arcuate nucleus was performed. Phagocytosis was assessed using in vivo and in vitro pharmacological techniques. Results: Microglial EP4 deletion markedly reduced weight gain and food intake in response to HFD feeding. In correspondence with this lean phenotype, insulin sensitivity was also improved in the HFD-fed MG-EP4 KO mice though glucose tolerance remained surprisingly unaffected. Mechanistically, EP4-deficient microglia showed an attenuated phagocytic state marked by reduced CD68 expression and fewer contacts with POMC neuron soma and processes. These cellular changes observed in the microglial EP4 knockout mice corresponded with an increased density of POMC neurites extending into the paraventricular nucleus. Conclusion: These findings reveal that microglial EP4 signaling promotes body weight gain and insulin resistance during HFD feeding. Furthermore, the data suggest that curbing microglial phagocytic function may preserve POMC cytoarchitecture and PVN input to limit overconsumption during diet-induced obesity.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 276-LB ◽  
Author(s):  
RENATA PEREIRA ◽  
ANGELA C. OLVERA ◽  
ALEX A. MARTI ◽  
RANA HEWEZI ◽  
WILLIAM A. BUI TRAN ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1897-P
Author(s):  
HISASHI YOKOMIZO ◽  
ATSUSHI ISHIKADO ◽  
TAKANORI SHINJO ◽  
KYOUNGMIN PARK ◽  
YASUTAKA MAEDA ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1759-P
Author(s):  
ANZELA NIRAULA ◽  
RACHAEL FASNACHT ◽  
KELLY M. NESS ◽  
JEREMY FREY ◽  
MAURICIO D. DORFMAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document