scholarly journals Renin-Angiotensin System and Sympathetic Neurotransmitter Release in the Central Nervous System of Hypertension

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Kazushi Tsuda

Many Studies suggest that changes in sympathetic nerve activity in the central nervous system might have a crucial role in blood pressure control. The present paper discusses evidence in support of the concept that the brain renin-angiotensin system (RAS) might be linked to sympathetic nerve activity in hypertension. The amount of neurotransmitter release from sympathetic nerve endings can be regulated by presynaptic receptors located on nerve terminals. It has been proposed that alterations in sympathetic nervous activity in the central nervous system of hypertension might be partially due to abnormalities in presynaptic modulation of neurotransmitter release. Recent evidence indicates that all components of the RAS have been identified in the brain. It has been proposed that the brain RAS may actively participate in the modulation of neurotransmitter release and influence the central sympathetic outflow to the periphery. This paper summarizes the results of studies to evaluate the possible relationship between the brain RAS and sympathetic neurotransmitter release in the central nervous system of hypertension.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emilio Badoer

Leptin and resistin are cytokines whose plasma levels correlate with adiposity. Leptin is a hormone synthesised and released from adipocytes and can be transported into the brain. Resistin is produced in adipocytes in rodents and in macrophages in humans, particularly macrophages that have infiltrated adipose tissue. Both hormones can act within the brain to influence sympathetic nerve activity. Leptin appears to have a generalised sympatho-excitatory actions whilst resistin appears to increase sympathetic nerve activity affecting the cardiovascular system but inhibits sympathetic nerve activity to brown adipose tissue, which contrasts with leptin. Since both hormones can be elevated in conditions of metabolic dysfunction, interactions/crosstalk between these two hormones in the brain is a real possibility. This review describes the current knowledge regarding such crosstalk within the central nervous system. The evidence suggests that with respect to sympathetic nerve activity, crosstalk between leptin and resistin can elicit enhanced sympatho-excitatory responses to the kidneys. In contrast, with respect to food intake, resistin has weaker effects, but in regard to insulin secretion and thermogenesis, leptin and resistin have opposing actions. Thus, in conditions in which there is increased resistin and leptin levels, the result of crosstalk in the central nervous system could contribute to worse cardiovascular and metabolic complications.



Endocrinology ◽  
2013 ◽  
Vol 154 (7) ◽  
pp. 2481-2488 ◽  
Author(s):  
Caroline Fernandes-Santos ◽  
Zhongming Zhang ◽  
Donald A. Morgan ◽  
Deng-Fu Guo ◽  
Andrew F. Russo ◽  
...  

Abstract The pancreatic hormone amylin acts in the central nervous system (CNS) to decrease food intake and body weight. We hypothesized that amylin action in the CNS promotes energy expenditure by increasing the activity of the sympathetic nervous system. In mice, ip administration of amylin significantly increased c-Fos immunoreactivity in hypothalamic and brainstem nuclei. In addition, mice treated with intracerebroventricular (icv) amylin (0.1 and 0.2 nmol) exhibited a dose-related decrease in food intake and body weight, measured 4 and 24 hours after treatment. The icv injection of amylin also increased body temperature in mice. Using direct multifiber sympathetic nerve recording, we found that icv amylin elicited a significant and dose-dependent increase in sympathetic nerve activity (SNA) subserving thermogenic brown adipose tissue (BAT). Of note, icv injection of amylin also evoked a significant and dose-related increase in lumbar and renal SNA. Importantly, icv pretreatment with the amylin receptor antagonist AC187 (20 nmol) abolished the BAT SNA response induced by icv amylin, indicating that the sympathetic effects of amylin are receptor-mediated. Conversely, icv amylin-induced BAT SNA response was enhanced in mice overexpressing the amylin receptor subunit, RAMP1 (receptor-activity modifying protein 1), in the CNS. Our data demonstrate that CNS action of amylin regulates sympathetic nerve outflow to peripheral tissues involved in energy balance and cardiovascular function.





2012 ◽  
Vol 303 (2) ◽  
pp. H197-H206 ◽  
Author(s):  
Aline M. Hilzendeger ◽  
Donald A. Morgan ◽  
Leonard Brooks ◽  
David Dellsperger ◽  
Xuebo Liu ◽  
...  

The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT1aR−/−), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT1aR−/− vs. AT1aR+/+ mice. ICV leptin in rats increased AT1aR and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT1aR mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.



2008 ◽  
Vol 294 (2) ◽  
pp. H1067-H1074 ◽  
Author(s):  
Zhi-Hua Zhang ◽  
Yang Yu ◽  
Yu-Ming Kang ◽  
Shun-Guang Wei ◽  
Robert B. Felder

Aldosterone acts upon mineralocorticoid receptors in the brain to increase blood pressure and sympathetic nerve activity, but the mechanisms are still poorly understood. We hypothesized that aldosterone increases sympathetic nerve activity by upregulating the renin-angiotensin system (RAS) and oxidative stress in the brain, as it does in peripheral tissues. In Sprague-Dawley rats, aldosterone (Aldo) or vehicle (Veh) was infused for 1 wk via an intracerebroventricular (ICV) cannula, while RU-28318 (selective mineralocorticoid receptor antagonist), Tempol (superoxide dismutase mimetic), losartan [angiotensin II type 1 receptor (AT1R) antagonist], or Veh was infused simultaneously via a second ICV cannula. After 1 wk of ICV Aldo, plasma norepinephrine was increased and mean arterial pressure was slightly elevated, but heart rate was unchanged. These effects were ameliorated by ICV infusion of RU-28318, Tempol or losartan. Aldo increased expression of AT1R and angiotensin-converting enzyme (ACE) mRNA in hypothalamic tissue. RU-28318 minimized and Tempol prevented the increase in AT1R mRNA; RU-28318 prevented the increase in ACE mRNA. Losartan had no effect on AT1R or ACE mRNA. Immunohistochemistry revealed Aldo-induced increases in dihydroethidium staining (indicating oxidative stress) and Fra-like activity (indicating neuronal excitation) in neurons of the hypothalamic paraventricular nucleus (PVN). RU-28318 prevented the increases in superoxide and Fra-like activity in PVN; Tempol and losartan minimized these effects. Acute ICV infusions of sarthran (AT1R antagonist) or Tempol produced greater sympathoinhibition in Aldo-treated than in Veh-treated rats. Thus aldosterone upregulates key elements of brain RAS and induces oxidative stress in the hypothalamus. Aldosterone may increase sympathetic nerve activity by these mechanisms.



1989 ◽  
Vol 147 (1) ◽  
pp. 457-470 ◽  
Author(s):  
JAMES W. TRUMAN ◽  
PHILIP F. COPENHAVER

Larval and pupal ecdyses of the moth Manduca sexta are triggered by eclosion hormone (EH) released from the ventral nervous system. The major store of EH activity in the latter resides in the proctodeal nerves that extend along the larval hindgut. At pupal ecdysis, the proctodeal nerves show a 90% depletion of stored activity, suggesting that they are the major release site for the circulating EH that causes ecdysis. Surgical experiments involving the transection of the nerve cord or removal of parts of the brain showed that the proctodeal nerve activity originates from the brain. Retrograde and anterograde cobalt fills and immunocytochemistry using antibodies against EH revealed two pairs of neurons that reside in the ventromedial region of the brain and whose axons travel ipsilaterally along the length of the central nervous system (CNS) and project into the proctodeal nerve, where they show varicose release sites. These neurons constitute a novel neuroendocrine pathway in insects which appears to be dedicated solely to the release of EH.



1992 ◽  
Vol 262 (2) ◽  
pp. H503-H510 ◽  
Author(s):  
C. M. Heesch ◽  
K. W. Barron

This study was designed to evaluate a possible central nervous system (CNS) component to acute baroreflex resetting. In nine arterial baroreceptor-denervated, chloralose-urethan-anesthetized rats, a control (C) aortic nerve stimulation curve (3-5 V, 1 ms, 0-64 Hz) was obtained. Next, a constant "baroreceptor" input was delivered to the CNS (left aortic nerve stimulation, 10 min, 10.2 +/- 1.5 Hz). Within the first 13 s of aortic nerve stimulation, maximum inhibition of lumbar sympathetic nerve activity (LSNA) was 60 +/- 7.8% of baseline and at 1 min it increased to 68 +/- 5.6% of baseline. At the end of the 10-min aortic nerve stimulation, LSNA was not different from the response at 1 min (68 +/- 5.6% = 74 +/- 4.1%). Immediately after the constant stimulation (within 30 s), a test or reset (RS) curve was obtained (0-64 Hz). A recovery (RC) curve was obtained 10-20 min later. The slope of the linear portion of the curve and the stimulation frequency that produced 50% maximum inhibition (ES50) were compared among the three baroreflex curves (C, RS, RC,) and no significant differences were found. Thus, although a CNS component to baroreflex adaptation was evident during the first minute of aortic nerve stimulation, a longer term acute resetting of the baroreflex curve did not occur.



Sign in / Sign up

Export Citation Format

Share Document