scholarly journals Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Kangfu Yu

Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops.

Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Meizhong Luo ◽  
Yi-Hong Wang ◽  
David Frisch ◽  
Tarek Joobeur ◽  
Rod A Wing ◽  
...  

Utilizing improved methods, two bacterial artificial chromosome (BAC) libraries were constructed for the multidisease-resistant line of melon MR-1. The HindIII library consists of 177 microtiter plates in a 384-well format, while the EcoRI library consists of 222 microtiter plates. Approximately 95.6% of the HindIII library clones contain nuclear DNA inserts with an average size of 118 kb, providing a coverage of 15.4 genome equivalents. Similarly, 96% of the EcoRI library clones contain nuclear DNA inserts with an average size of 114 kb, providing a coverage of 18.7 genome equivalents. Both libraries were evaluated for contamination with high-copy vector, empty pIndigoBac536 vector, and organellar DNA sequences. High-density filters were screened with two genetic markers FM and AM that co-segregate with Fom-2, a gene conferring resistance to races 0 and 1 of Fusarium wilt. Fourteen and 18 candidate BAC clones were identified for the FM and AM probes, respectively, from the HindIII library, while 34 were identified for the AM probe from filters A, B, and C of the EcoRI library.Key words: bacterial artificial chromosome (BAC) library, Fusarium wilt, melon, pCUGIBAC1, resistant gene.


2018 ◽  
Author(s):  
Kae Koganebuchi ◽  
Takashi Gakuhari ◽  
Hirohiko Takeshima ◽  
Kimitoshi Sato ◽  
Kiyotaka Fujii ◽  
...  

AbstractTo analyze a specific genome region using next-generation sequencing technologies, the enrichment of DNA libraries with targeted capture methods has been standardized. For enrichment of mitochondrial genome, a previous study developed an original targeted capture method that use baits constructed from long-range polymerase chain reaction (PCR) amplicons, common laboratory reagents, and equipment. In this study, a new targeted capture method is presented, that of bacterial artificial chromosome (BAC) double capture (BDC), modifying the previous method, but using BAC libraries as baits for sequencing a relatively large gene. We applied the BDC approach for the 214 kb autosomal region, ring finger protein 213, which is the susceptibility gene of moyamoya disease (MMD). To evaluate the reliability of BDC, cost and data quality were compared with those of a commercial kit. While the ratio of duplicate reads was higher, the cost was less than that of the commercial kit. The data quality was sufficiently the same as that of the kit. Thus, BDC can be an easy, low-cost, and useful method for analyzing individual genome region with substantial length.


Fruits ◽  
2008 ◽  
Vol 63 (6) ◽  
pp. 375-379 ◽  
Author(s):  
Pietro Piffanelli ◽  
Alberto D. Vilarinhos ◽  
Jan Safar ◽  
Xavier Sabau ◽  
Jaroslav Dolezel

Genome ◽  
2007 ◽  
Vol 50 (9) ◽  
pp. 871-875 ◽  
Author(s):  
C.J. Coyne ◽  
M.T. McClendon ◽  
J.G. Walling ◽  
G.M. Timmerman-Vaughan ◽  
S. Murray ◽  
...  

Pea ( Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2–0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits.


2021 ◽  
Vol 49 (3) ◽  
pp. 12414
Author(s):  
Jesús ORTEGA-GARCÍA ◽  
Ramón J. HOLGUÍN-PEÑA ◽  
Pablo PRECIADO-RANGEL ◽  
Reyna R. GUILLÉN-ENRÍQUEZ ◽  
Gerardo ZAPATA-SIFUENTES ◽  
...  

Asparagus officinalis L. is a crop associated with arid and dry environments of arid deserts; its tender product is considered a gourmet food for its exclusive consumption and its high prices. Among the main attributes of this vegetable are being a product low in calories, fat and cholesterol, with a high content of vitamin C, as well as rich in potassium and calcium phosphate. The indiscriminate use of synthetic fertilizers in agricultural crop production systems, as well as the increasing dependence, they cause deterioration of the physical and chemical properties of the soil, in addition have a variable impact on the composition and functions of the soil microbiota. Under indigenous area “Seris” in Sonora desert conditions (salinity and high °C), var. ‘Early California’ of asparagus was biofertilized with Bacillus amyloliquefaciens (Ba) as a halo-PGPB and chitosan (QUI) to evaluate nutritional value and yield-production. Results showed that Ba and QUI in the vegetative period increased the emergence rate (≥15%), nitrates in sap (≥10%), fresh and root weight and crown (≥25%); significant values in its subsequent production stage of shoots for human consumption (proximal values such as protein (≥33%), and carbohydrates (≥20%), in addition to K+ (≥9%) and Vit C (≥15%) compared with the control, were obtained. These results express the possibility of using Bacillus amyloliquefaciens as a halo-PGPB and chitosan as a biofertilizer of marine origin in asparagus under Sonora desert conditions.


Sign in / Sign up

Export Citation Format

Share Document